Sponsored Content
Operating Systems Solaris Using liveupgrade on single ZFS pool Post 302730345 by jlliagre on Monday 12th of November 2012 04:36:47 PM
Old 11-12-2012
Quote:
Originally Posted by batas
.. and choose any of the disk on the mirrored pool where BE should be created?
If you have a mirrored pool, whatever you create on it is on both sides of the mirror.

Perhaps are you thinking of breaking the mirror before creating the new boot environment but with ZFS, unless you have not enough free space on the pool, that makes no sense.
 

9 More Discussions You Might Find Interesting

1. Solaris

ZFS Pool Mix-up

Hi all I plan to install Solaris 10U6 on some SPARC server using ZFS as root pool, whereas I would like to keep the current setup done by VxVM: - 2 internal disks: c0t0d0 and c0t1d0 - bootable root-volume (mirrored, both disks) - 1 non-mirrored swap slice - 1 non-mirrored slices for Live... (1 Reply)
Discussion started by: blicki
1 Replies

2. Solaris

unable to import zfs pool

# zpool import pool: emcpool1 id: 5596268873059055768 state: UNAVAIL status: One or more devices are missing from the system. action: The pool cannot be imported. Attach the missing devices and try again. see: Sun Message ID: ZFS-8000-3C config: emcpool1 ... (7 Replies)
Discussion started by: fugitive
7 Replies

3. Infrastructure Monitoring

zfs - migrate from pool to pool

Here are the details. cnjr-opennms>root$ zfs list NAME USED AVAIL REFER MOUNTPOINT openpool 20.6G 46.3G 35.5K /openpool openpool/ROOT 15.4G 46.3G 18K legacy openpool/ROOT/rds 15.4G 46.3G 15.3G / openpool/ROOT/rds/var 102M ... (3 Replies)
Discussion started by: pupp
3 Replies

4. Solaris

ZFS pool question

I created a pool the other day. I created a 10 gig files just for a test, then deleted it. I proceeded to create a few files systems. But for some reason the pool shows 10% full, but the files systems are both at 1%? Both files systems share the same pool. When I ls -al the pool I just... (6 Replies)
Discussion started by: mrlayance
6 Replies

5. Solaris

zfs pool migration

I need to migrate an existing raidz pool to a new raidz pool with larger disks. I need the mount points and attributes to migrate as well. What is the best procedure to accomplish this. The current pool is 6x36GB disks 202GB capacity and I am migrating to 5x 72GB disks 340GB capacity. (2 Replies)
Discussion started by: jac
2 Replies

6. Solaris

Best way to rename a ZFS Pool?

Other than export/import, is there a cleaner way to rename a pool without unmounting de FS? Something like, say "zpool rename a b"? Thanks. (2 Replies)
Discussion started by: verdepollo
2 Replies

7. Solaris

ZFS - overfilled pool

installed Solaris 11 Express on my server machine a while ago. I created a Z2 RAID over five HDDs and created a few ZFS filesystems on it. Once I (unintentionally) managed to fill the pool completely with data and (to my surprise) the filesystems stopped working - I could not read/delete any... (3 Replies)
Discussion started by: RychnD
3 Replies

8. Solaris

ZFS - Dataset / pool name are the same...cannot destroy

I messed up my pool by doing zfs send...recive So I got the following : zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 928G 17.3G 911G 1% 1.00x ONLINE - tank1 928G 35.8G 892G 3% 1.00x ONLINE - So I have "tank1" pool. zfs get all... (8 Replies)
Discussion started by: eladgrs
8 Replies

9. UNIX for Beginners Questions & Answers

Opening up ZFS pool as writable

I have installed FreeBSD onto a raw image file using QEMU Emulator successfully. I have formatted the image file using the ZFS file system (ZFS POOL). Using the following commands below I have successfully mounted the image file ready to be opened by zpool sudo losetup /dev/loop0 .img sudo... (1 Reply)
Discussion started by: alphatron150
1 Replies
libtalloc_pools(3)						      talloc							libtalloc_pools(3)

NAME
libtalloc_pools - Chapter 5: Memory pools Memory pools Allocation of a new memory is an expensive operation and large programs can contain thousands of calls of malloc() for a single computation, where every call allocates only a very small amount of the memory. This can result in an undesirable slowdown of the application. We can avoid this slowdown by decreasing the number of malloc() calls by using a memory pool. A memory pool is a preallocated memory space with a fixed size. If we need to allocate new data we will take the desired amount of the memory from the pool instead of requesting a new memory from the system. This is done by creating a pointer that points inside the preallocated memory. Such a pool must not be reallocated as it would change its location - pointers that were pointing inside the pool would become invalid. Therefore, a memory pool requires a very good estimate of the required memory space. The talloc library contains its own implementation of a memory pool. It is highly transparent for the programmer. The only thing that needs to be done is an initialization of a new pool context using talloc_pool() - which can be used in the same way as any other context. Refactoring of existing code (that uses talloc) to take the advantage of a memory pool is quite simple due to the following properties of the pool context: o if we are allocating data on a pool context, it takes the desired amount of memory from the pool, o if the context is a descendant of the pool context, it takes the space from the pool as well, o if the pool does not have sufficient portion of memory left, it will create a new non-pool context, leaving the pool intact /* allocate 1KiB in a pool */ TALLOC_CTX *pool_ctx = talloc_pool(NULL, 1024); /* Take 512B from the pool, 512B is left there */ void *ptr = talloc_size(pool_ctx, 512); /* 1024B > 512B, this will create new talloc chunk outside the pool */ void *ptr2 = talloc_size(ptr, 1024); /* The pool still contains 512 free bytes * this will take 200B from them. */ void *ptr3 = talloc_size(ptr, 200); /* This will destroy context 'ptr3' but the memory * is not freed, the available space in the pool * will increase to 512B. */ talloc_free(ptr3); /* This will free memory taken by 'pool_ctx' * and 'ptr2' as well. */ talloc_free(pool_ctx); The above given is very convenient, but there is one big issue to be kept in mind. If the parent of a talloc pool child is changed to a parent that is outside of this pool, the whole pool memory will not be freed until the child is freed. For this reason we must be very careful when stealing a descendant of a pool context. TALLOC_CTX *mem_ctx = talloc_new(NULL); TALLOC_CTX *pool_ctx = talloc_pool(NULL, 1024); struct foo *foo = talloc(pool_ctx, struct foo); /* mem_ctx is not in the pool */ talloc_steal(mem_ctx, foo); /* pool_ctx is marked as freed but the memory is not deallocated, accessing the pool_ctx again will cause an error */ talloc_free(pool_ctx); /* This deallocates the pool_ctx. */ talloc_free(mem_ctx); It may often be better to copy the memory we want instead of stealing it to avoid this problem. If we do not need to retain the context name (to keep the type information), we can use talloc_memdup() to do this. Copying the memory out of the pool may, however, discard all the performance boost given by the pool, depending on the size of the copied memory. Therefore, the code should be well profiled before taking this path. In general, the golden rule is: if we need to steal from the pool context, we should not use a pool context. Version 2.0 Tue Jun 17 2014 libtalloc_pools(3)
All times are GMT -4. The time now is 03:41 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy