Sponsored Content
Full Discussion: I/O bound computing clusters
Special Forums UNIX and Linux Applications High Performance Computing I/O bound computing clusters Post 302691975 by jim mcnamara on Sunday 26th of August 2012 10:17:02 PM
Old 08-26-2012
Is it a database or a LUN? Either way you can get to the data, but you do have a wonderful chance of becoming i/o bound.

There are ways around this: creating logical partitions either as tables or LUNs, each on separate physical LUN/tablspace file/devices.

Can you give us more information?
 

9 More Discussions You Might Find Interesting

1. High Performance Computing

question about clusters

hello all...first off let me say hi and im really glad to be apart of this community....tried to join awhile back but i couldnt for some reason im a highschool student and im eager to learn and what im trying to learn now is clusters i have 3 computers in my room all connected on a simple hub ... (1 Reply)
Discussion started by: hexadecimal0011
1 Replies

2. Virtualization and Cloud Computing

Event Cloud Computing - IBM Turning Data Centers Into ?Computing Cloud?

Tim Bass Thu, 15 Nov 2007 23:55:07 +0000 *I predict we may experience less*debates*on the use of the term “event cloud”*related to*CEP in the future, now that both IBM and Google* have made announcements about “cloud computing” and “computing cloud”, IBM Turning Data Centers Into ‘Computing... (0 Replies)
Discussion started by: Linux Bot
0 Replies

3. Solaris

List zones bound to a pool

How to get the list of zones which are bound to a pool say appPool. Rather then logging in each zone and then check from pool stat command. (3 Replies)
Discussion started by: fugitive
3 Replies

4. Programming

env not bound: BEDEWORK

I was trying to test dump data on bedework jxi console however I got the error below.I'm using debian as my OS and installed quickstart bedework on it. Pls advise what am I missing. thanks Caused by: javax.naming.NameNotFoundException: env not bound at... (1 Reply)
Discussion started by: lhareigh890
1 Replies

5. Solaris

VCS Clusters

:)Hi, can someone please explain VCS clustering and where do we need VCS clusters ..? :o:)Thanks in advance :o:) (1 Reply)
Discussion started by: amitbisht9
1 Replies

6. Linux

Memory bound error...

Hi all, Am getting the below error for a job that is run in our system. error code: 114, pc=0, call=1, seg=0 114 Attempt to access item beyond bounds of memory (Signal 11) This job uses a cobol program and as far as I know, the problem is related to this cobol program. What does this... (1 Reply)
Discussion started by: das.somik
1 Replies

7. Solaris

Bound, Unbound, Idle, Listening,

Hi Guys, I am studying netstat and I am getting confused a lot. I will be glad if someone will be kind enough to explain to me : 1) bound port 2) unbound port 3) idle 4 listening I will very much appreciate it. Thanks guys We have a special forum with special rules for homework (3 Replies)
Discussion started by: cjashu
3 Replies

8. Emergency UNIX and Linux Support

How to fix the CPU bound issues on AIX?

Hi All, Can you please answer my question. i see lot of CPU utilization on AIX LPARs. i am able to find the cause of the probelm. But i do not know how to mitigate or fix the problem. for instance, i found the process which is consuming most of CPU. i informed the responsible team. how... (7 Replies)
Discussion started by: System Admin 77
7 Replies

9. Shell Programming and Scripting

Awk: get upper and lower bound per group

Hi all, I've data as: 22 51018157 51018157 exonic CHKB nonsynonymous SNV 22 51018204 51018204 exonic CHKB nonsynonymous SNV 22 51018428 51018428 exonic CHKB nonsynonymous SNV 22 51018814 51018814 ... (4 Replies)
Discussion started by: genome
4 Replies
SG_LUNS(8)							     SG3_UTILS								SG_LUNS(8)

NAME
sg_luns - send SCSI REPORT LUNS command or decode given LUN SYNOPSIS
sg_luns [--decode] [--help] [--hex] [--linux] [--maxlen=LEN] [--quiet] [--raw] [--select=SR] [--verbose] [--version] DEVICE sg_luns --test=ALUN [--hex] [--verbose] DESCRIPTION
In the first form shown in the SYNOPSIS this utility sends the SCSI REPORT LUNS command to the DEVICE and outputs the response. The response should be a list of LUNs ("a LUN inventory") for the I_T nexus associated with the DEVICE. Roughly speaking that is all LUNs that share the target device that the REPORT LUNS command is sent through. In the SPC-3 and SPC-4 SCSI standards support for the REPORT LUNS command is mandatory. When the --test=ALUN option is given (the second form in the SYNOPSIS), then the ALUN value is decoded as outlined in SAM-3, SAM-4 and SAM-5 (revision 13, section 4.7) . Where required below the first form shown in the SYNOPSIS is called "device mode" and the second form is called "test mode". OPTIONS
Arguments to long options are mandatory for short options as well. -d, --decode decode LUNs into their component parts, as described in the LUN section of SAM-3, SAM-4 and SAM-5. -h, --help output the usage message then exit. -H, --hex [device mode] when given once this utility will output the SCSI response (i.e. the data-out buffer) to the REPORT LUNS command in ASCII hex then exit. When given twice it causes --decode to output component fields in hex rather than decimal. -H, --hex [test mode] when this option is given, then decoded component fields of ALUN are output in hex. -l, --linux this option is only available in Linux. After the T10 representation of each 64 bit LUN (in 16 hexadecimal digits), if this option is given then to the right, in square brackets, is the Linux LUN integer in decimal. If the --hex option is given twice (e.g. -HH) as well then the Linux LUN integer is output in hexadecimal. -m, --maxlen=LEN where LEN is the (maximum) response length in bytes. It is placed in the cdb's "allocation length" field. If not given (or LEN is zero) then 8192 is used. The maximum allowed value of LEN is 1048576. -q, --quiet output only the ASCII hex rendering of each report LUN, one per line. Without the --quiet option, there is header information printed before the LUN listing. -r, --raw output the SCSI response (i.e. the data-out buffer) in binary (to stdout). -s, --select=SR this option sets the SELECT REPORT field (SR) in the SCSI REPORT LUNS command. The default value is 0. For detailed information see the REPORT LUNS command in SPC (most recent is SPC-4 revision 36e in section 6.33). To simplify, for the I_T nexus associated with the DEVICE, the meanings of the SR values defined to date for SPC-4 are: 0 : all LUNs excluding well known logical units 1 : well known logical units 2 : all LUNs Values between 0xf8 and 0xff (inclusive) are vendor specific (SPC-4 rev 36e), other values greater than 2 are reserved. This utility will accept any value between 0 and 255 (0xff) for SR . -t, --test=ALUN ALUN is assumed to be a hexadecimal number in ASCII hex or the letter 'L' followed by a decimal number (see below). The hexadecimal number can be up to 64 bits in size (i.e. 16 hexadecimal digits) and is padded to the right if less than 16 hexadecimal digits are given (e.g. --test=0122003a represents T10 LUN 0122003a00000000). ALUN may be prefixed by '0x' or '0X' (e.g. the previous example could have been --test=0x0122003a). ALUN may also be given with spaces or tabs between each byte (or other grouping) but then ALUN would need to be surrounded by single or double quotes. In the decimal number case (i.e. following a 'L') that number is assumed to be a Linux "word flipped" LUN which is converted into a T10 LUN representation and printed. In both cases the number is interpreted as a LUN and decoded as if the --decode option had been given. Also when ALUN is a hexadecimal number it can have a trailing 'L' in which case the corresponding Linux "word flipped" LUN value is output. The LUN is decoded in all cases. -v, --verbose increase the level of verbosity, (i.e. debug output). -V, --version print the version string and then exit. NOTES
The SCSI REPORT LUNS command is important for Logical Unit (LU) discovery. After a target device is discovered (usually via some transport specific mechanism), a REPORT LUNS command should either be sent to LUN 0 (which is Peripheral device addressing method with bus_id=0 and target/lun=0) or to the REPORT LUNS well known LUN (i.e. 0xc101000000000000). SAM-5 requires that one of these responds with an inventory of LUNS that are contained in this target device. In test mode, if the --hex option is given once then in the decoded output, some of the component fields are printed in hex with leading zeros. The leading zeros are to indicate the size of the component field. For example: in the Peripheral device addressing method (16 bits overall), the bus ID is 6 bits wide and the target/LUN field is 8 bits wide; so both are shown with two hex digits (e.g. bus_id=0x02, tar- get=0x3a). EXAMPLES
Typically by the time user space programs get to run, SCSI LUs have been discovered. In Linux the lsscsi utility lists the LUs that are currently present. The LUN of a device (LU) is the fourth element in the tuple at the beginning of each line. Below we see a target (or "I_T Nexus": "6:0:0") has two LUNS: 1 and 49409. If 49409 is converted into T10 LUN format it is 0xc101000000000000 which is the REPORT LUNS well known LUN. # lsscsi -g [6:0:0:1] disk Linux scsi_debug 0004 /dev/sdb /dev/sg1 [6:0:0:49409]wlun Linux scsi_debug 0004 - /dev/sg2 We could send a REPORT LUNS command to either /dev/sdb, /dev/sg1 or /dev/sg2 and get the same result. Below we use /dev/sg1 : # sg_luns /dev/sg1 Lun list length = 8 which imples 1 lun entry Report luns [select_report=0x0]: 0001000000000000 That is a bit noisy so cut down the clutter with --quiet: # sg_luns -q /dev/sg1 0001000000000000 Now decode that LUN into its component parts: # sg_luns -d -q /dev/sg1 0001000000000000 Peripheral device addressing: lun=1 Would like to see how wide that component LUN field is: # sg_luns -d -q -HH /dev/sg1 0001000000000000 Peripheral device addressing: lun=0x01 So it is 8 bits wide (actually between 5 and 8 bits wide, inclusive). Now use --select=1 to find out if there are any well known LUNs: # sg_luns -q -s 1 /dev/sg1 c101000000000000 So how many LUNs do we have all together (associated with the current I_T Nexus): # sg_luns -q -s 2 /dev/sg1 0001000000000000 c101000000000000 # sg_luns -q -s 2 -d /dev/sg1 0001000000000000 Peripheral device addressing: lun=1 c101000000000000 REPORT LUNS well known logical unit The following example uses the --linux option and is not available in other operating systems. The extra number in square brackets is the Linux version of T10 LUN shown at the start of the line. # sg_luns -q -s 2 -l /dev/sg1 0001000000000000 [1] c101000000000000 [49409] Now we use the --test= option to decode LUNS input on the command line (rather than send a REPORT LUNS command and act on the response): # sg_luns --test=0001000000000000 Decoded LUN: Peripheral device addressing: lun=1 # sg_luns --test="c1 01" Decoded LUN: REPORT LUNS well known logical unit # sg_luns -t 0x023a004b -H Decoded LUN: Peripheral device addressing: bus_id=0x02, target=0x3a >>Second level addressing: Peripheral device addressing: lun=0x4b The next example is Linux specific as we try to find out what the Linux LUN 49409 translates to in the T10 world: # sg_luns --test=L49409 64 bit LUN in T10 preferred (hex) format: c1 01 00 00 00 00 00 00 Decoded LUN: REPORT LUNS well known logical unit And the mapping between T10 and Linux LUN representations can be done the other way: # sg_luns -t c101L Linux 'word flipped' integer LUN representation: 49409 Decoded LUN: REPORT LUNS well known logical unit EXIT STATUS
The exit status of sg_luns is 0 when it is successful. Otherwise see the sg3_utils(8) man page. AUTHORS
Written by Douglas Gilbert. REPORTING BUGS
Report bugs to <dgilbert at interlog dot com>. COPYRIGHT
Copyright (C) 2004-2013 Douglas Gilbert This software is distributed under a FreeBSD license. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR- POSE. SEE ALSO
sg_inq(8) sg3_utils-1.36 May 2013 SG_LUNS(8)
All times are GMT -4. The time now is 05:54 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy