Sponsored Content
Top Forums Programming pthread question : global variable not updated Post 302609897 by sanjayc on Tuesday 20th of March 2012 02:37:21 PM
Old 03-20-2012
pthread question : global variable not updated

Hi,
I wrote the following program to understand mutexes. If I run the program , number of threads is shown as zero, even after creating one thread. When running with gdb, it works fine.

The function process is used to update global variable (used to keep track of threads). It looks like the second instance of display (which displays number of threads ) is running before the counter gets incremented. If I add a pthread_join in main thread it works (main thread waits for created thread to complete). Is there a better way to address this and is my understanding correct? Thanks

Code:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int num_thread=0;
 pthread_mutex_t threadcount=PTHREAD_MUTEX_INITIALIZER;

void *process( )
  {
  pthread_mutex_lock(&threadcount);
   num_thread++;
  pthread_mutex_unlock(&threadcount);
   }

void display()
  {
    pthread_mutex_lock(&threadcount);
   printf("num of threads %d \n",num_thread);
  pthread_mutex_unlock(&threadcount);
   }

 int main()
{
   pthread_t tid1, tid2;
    int t;
 
    display();
    pthread_create(&tid1,NULL,process,&t);
    display();
   return 0;
 
  }

Moderator's Comments:
Mod Comment Please use code tags for posting code.

Last edited by Corona688; 03-20-2012 at 04:40 PM..
 

10 More Discussions You Might Find Interesting

1. AIX

pthread lock question

Is it possible that the function "pthread_cond_broadcast" block itself and the function "pthread_cond_wait" unblock in multi-threads programming ? The operating system is AIX 5.2, its maintenance level is : 5.2.0.4, VisualAge C++ 6.0. Thanks (0 Replies)
Discussion started by: Frank2004
0 Replies

2. AIX

pthread performance question

Running dedicated on AIX with 4 processors, creating 4 threads, each with equal work to do, only runs about 20% faster than 1 thread with all of the work. Test case has no blocking but does share memory for read access only. Any ideas why I'm only seeing 20% gain? Is this typical on AIX? ... (1 Reply)
Discussion started by: ldarden
1 Replies

3. Shell Programming and Scripting

Global variable

I have written a shell scritp in which i am using a variable which is declared before a while loop and i am updaitng the variable in while loop and want to use its updated value outside the loop. I am not able to do so, b'coz the scope of the variable is limited to the while loop only and when i am... (5 Replies)
Discussion started by: deepanshu
5 Replies

4. Programming

a question about pthread performance

Hello, I run my pthread code on Linux with 4 processors. However, the speed up is only 2 times. The code is about solving equation (G+s(i)C)z(i)=B*us(i), i=1,...,n. Here G,C are m*m matrix, B*us(i) is a m*1 vector and s(i) are n different numbers. I need to solve the equation n times to... (1 Reply)
Discussion started by: mgig
1 Replies

5. Shell Programming and Scripting

Help with Global Variable

Hi Guyz, I have a requirement like, i have to run a script every hour to count the number of errors encountered. At the end of the day, i need to send them the total number of errors, that have ocurred the entire day. For eg. if 10 errors occurred for starting 1 hr, 5 for next 1 hr, so on.... (1 Reply)
Discussion started by: DTechBuddy
1 Replies

6. Programming

pthread and mutex question

Hello, I have got some issue with the struct variable with passed arguments the variable in the sturct is only recognize the last value their assigned to I'm pretty confused why the mutex didn't work out here is my program: #include<stdio.h> #include<pthread.h> pthread_mutex_t lock... (3 Replies)
Discussion started by: michael23
3 Replies

7. Shell Programming and Scripting

Global variable value

Hi All, Im new to shell scripting. I am running EgA.sh and setting one global variable XYZ=0 . Also calling another EgB.sh from EgA.sh, changing the value of XYZ=10 but after executing EgB.sh, value of XYZ is still 0. Im expecting it to be 10. Anyone for help. Thanks in Advance. :) (5 Replies)
Discussion started by: paliwal
5 Replies

8. Shell Programming and Scripting

Global Variable

Hi, I have created a variable say today at the begin having 123 as its value and inside a for loop it gets resolved to some value say 150 in its first iteration. How can I use this value 150 ( 1st iteration's ) outside the scope of for loop ?. In the same way I wanted to use all iteration's... (1 Reply)
Discussion started by: penqueen
1 Replies

9. Shell Programming and Scripting

Question around Global Variable

Hi, I am using Linux and sh shell count=7 find * -prune -type d | sort -r -n | ( while read d; do if ; then echo "FOUND COUNTER1 is: $count" break 2; fi done echo "FOUND COUNTER2 is: $count" ) if ; then echo "Problem: Multiple or NO records...Please CHECK !!" fi Output: ... (4 Replies)
Discussion started by: mohtashims
4 Replies

10. Shell Programming and Scripting

[bash] why my variable is not updated?

Does anyone know why the below script is not working? Why is not the variable tot_files updated? location=$1 cd "$location" tot_files=0 ( echo "" # recursively gets the total number of files tot_files=$(for t in files ; do echo `find . -type ${t:0:1} | wc -l` $t | cut -f1... (12 Replies)
Discussion started by: soichiro
12 Replies
PTHREAD_MUTEX(3)					     Library Functions Manual						  PTHREAD_MUTEX(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_destroy - operations on mutexes SYNOPSIS
#include <pthread.h> pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr); int pthread_mutex_lock(pthread_mutex_t *mutex); int pthread_mutex_trylock(pthread_mutex_t *mutex); int pthread_mutex_unlock(pthread_mutex_t *mutex); int pthread_mutex_destroy(pthread_mutex_t *mutex); DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent modifications, and implementing critical sections and monitors. A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex that is already locked by another thread is suspended until the own- ing thread unlocks the mutex first. pthread_mutex_init initializes the mutex object pointed to by mutex according to the mutex attributes specified in mutexattr. If mutexattr is NULL, default attributes are used instead. The LinuxThreads implementation supports only one mutex attributes, the mutex kind, which is either ``fast'', ``recursive'', or ``error checking''. The kind of a mutex determines whether it can be locked again by a thread that already owns it. The default kind is ``fast''. See pthread_mutexattr_init(3) for more information on mutex attributes. Variables of type pthread_mutex_t can also be initialized statically, using the constants PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP (for error checking mutexes). pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it becomes locked and owned by the calling thread, and pthread_mutex_lock returns immediately. If the mutex is already locked by another thread, pthread_mutex_lock suspends the calling thread until the mutex is unlocked. If the mutex is already locked by the calling thread, the behavior of pthread_mutex_lock depends on the kind of the mutex. If the mutex is of the ``fast'' kind, the calling thread is suspended until the mutex is unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ``error checking'' kind, pthread_mutex_lock returns immediately with the error code EDEADLK. If the mutex is of the ``recursive'' kind, pthread_mutex_lock succeeds and returns immediately, recording the number of times the calling thread has locked the mutex. An equal number of pthread_mutex_unlock operations must be performed before the mutex returns to the unlocked state. pthread_mutex_trylock behaves identically to pthread_mutex_lock, except that it does not block the calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a ``fast'' mutex). Instead, pthread_mutex_trylock returns immediately with the error code EBUSY. pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be locked and owned by the calling thread on entrance to pthread_mutex_unlock. If the mutex is of the ``fast'' kind, pthread_mutex_unlock always returns it to the unlocked state. If it is of the ``recursive'' kind, it decrements the locking count of the mutex (number of pthread_mutex_lock operations performed on it by the calling thread), and only when this count reaches zero is the mutex actually unlocked. On ``error checking'' and ``recursive'' mutexes, pthread_mutex_unlock actually checks at run-time that the mutex is locked on entrance, and that it was locked by the same thread that is now calling pthread_mutex_unlock. If these conditions are not met, an error code is returned and the mutex remains unchanged. ``Fast'' mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread other than its owner. This is non-portable behavior and must not be relied upon. pthread_mutex_destroy destroys a mutex object, freeing the resources it might hold. The mutex must be unlocked on entrance. In the Linux- Threads implementation, no resources are associated with mutex objects, thus pthread_mutex_destroy actually does nothing except checking that the mutex is unlocked. CANCELLATION
None of the mutex functions is a cancellation point, not even pthread_mutex_lock, in spite of the fact that it can suspend a thread for arbitrary durations. This way, the status of mutexes at cancellation points is predictable, allowing cancellation handlers to unlock pre- cisely those mutexes that need to be unlocked before the thread stops executing. Consequently, threads using deferred cancellation should never hold a mutex for extended periods of time. ASYNC-SIGNAL SAFETY The mutex functions are not async-signal safe. What this means is that they should not be called from a signal handler. In particular, calling pthread_mutex_lock or pthread_mutex_unlock from a signal handler may deadlock the calling thread. RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success and a non-zero error code on error. ERRORS
The pthread_mutex_lock function returns the following error code on error: EINVAL the mutex has not been properly initialized. EDEADLK the mutex is already locked by the calling thread (``error checking'' mutexes only). The pthread_mutex_trylock function returns the following error codes on error: EBUSY the mutex could not be acquired because it was currently locked. EINVAL the mutex has not been properly initialized. The pthread_mutex_unlock function returns the following error code on error: EINVAL the mutex has not been properly initialized. EPERM the calling thread does not own the mutex (``error checking'' mutexes only). The pthread_mutex_destroy function returns the following error code on error: EBUSY the mutex is currently locked. AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr> SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_cancel(3). EXAMPLE
A shared global variable x can be protected by a mutex as follows: int x; pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER; All accesses and modifications to x should be bracketed by calls to pthread_mutex_lock and pthread_mutex_unlock as follows: pthread_mutex_lock(&mut); /* operate on x */ pthread_mutex_unlock(&mut); LinuxThreads PTHREAD_MUTEX(3)
All times are GMT -4. The time now is 05:13 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy