Sponsored Content
Top Forums Programming How to access argv[x] from another function other than main??? Post 302582867 by gabam on Monday 19th of December 2011 12:17:13 AM
Old 12-19-2011
How to access argv[x] from another function other than main???

Hi friends,
when I am passing arguments to main, I want another function to be able to have access to that function, the problem is that I am creating athread, which has a function like void *xyz(void *), how can pass the refernce of argv[x] to this function, if you see my program, you will better see the problem, so here it is!

Code:
 
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <pthread.h>
 
int main(int argc, char *argv[])
{
        void *thread1(void *);
        void *thread2(void *);
        if(argc != 2)
        {
        printf("Invalid no. of arguments!\n");
        exit(-1);
        }
        else
        {
        pthread_t tid1;
        pthread_t tid2;
        int t1 = 1;
        int t2 = 2;
        pthread_attr_t attr1;
        pthread_attr_t attr2;
        pthread_attr_init(&attr1);
        pthread_attr_init(&attr2);
        {
        pthread_create(&tid1,&attr1,thread1,(void *)t1);
        pthread_create(&tid2,&attr2,thread2,(void *)t2);
        }
        {
        pthread_join(tid1,NULL);
        pthread_join(tid2,NULL);
        }
        printf("\nThreads finished!\n");
        }
        return 0;
}
void *thread1(void *n)
{
        while(1)
        {
        printf("%s\n\n",argv[1]);
        sleep(1);
        }
        pthread_exit(0);
}
void *thread2(void *n)
{
        while(1)
        {
        printf("%s\n\n",argv[2]);
        sleep(1);
        }
        pthread_exit(0);
}

I this program the two thread functions don't have access to arv, what should I do???

Thanks
 

10 More Discussions You Might Find Interesting

1. Programming

c++ calling main() function

i just finished a project for a c++ class that i wrote at home on my computer, compiled with gcc. when i brought the code into school it would not compile, it would complain that cannot call main() function. at school we use ancient borland c++ from 1995. anyway my program has 20 different... (3 Replies)
Discussion started by: norsk hedensk
3 Replies

2. Programming

main function

Is it possible to execute any function before main() function in C or C++. (6 Replies)
Discussion started by: arun.viswanath
6 Replies

3. Programming

signal handling while in a function other than main

Hi, I have a main loop which calls a sub loop, which finally returns to the main loop itself. The main loop runs when a flag is set. Now, I have a signal handler for SIGINT, which resets the flag and thus stops the main loop. Suppose I send SIGINT while the program is in subloop, I get an error... (1 Reply)
Discussion started by: Theju
1 Replies

4. Shell Programming and Scripting

Help in separating variables declared in the main function

Hi! I've a C program as shown below.. The line numbers and the statements of the program are separated by a space.. 1 #include<stdio.h> 2 char a,b,c; 3 float x,y,z; 4 int main() 5 { 6 int d,e,f; 7 // further declarations 8 // further declarations 9 /* body*/ 10 } 11 void fun1() 12... (1 Reply)
Discussion started by: abk07
1 Replies

5. Programming

unable to send a char parameter from main to a function

why does this not work? #include <stdio.h> #include <stdlib.h> char getFileMode(char charChanger) { char filetype; /*var to hold the value to be returned*/ filetype = charSetter; /*set filetype to "l" if it is a symlink*/ return filetype; } int main(void){ char... (8 Replies)
Discussion started by: bluetxxth
8 Replies

6. Programming

Function main returning int?

H friends, As we know, a function returns a value and that value is saved somwhere. like int Sum( int x, int y ) { return x + y; } Total = Sum( 10, 20 ); The value 30 is saved in variable Total. Now the question is, what int value does the function main return, and where is it... (5 Replies)
Discussion started by: gabam
5 Replies

7. UNIX for Advanced & Expert Users

O argv, argv, wherefore art thou argv?

All of my machines (various open source derivatives on x86 and amd64) store argv above the stack (at a higher memory address). I am curious to learn if any systems store argv below the stack (at a lower memory address). I am particularly interested in proprietary Unices, such as Solaris, HP-UX,... (9 Replies)
Discussion started by: alister
9 Replies

8. UNIX for Dummies Questions & Answers

[ksh93+] Array fed by function is empty when used in main.

I feel that i am missing something obvious but i can't find what is wrong. I have a script that is launching some functions with "&" and each call is feeding the array with a value. When all calls are finished I just want to retrieve the values of that array. It is looking like that : ... (5 Replies)
Discussion started by: bibou25
5 Replies

9. Programming

A single statement without main function in c

A sample.c file is written with only one single statement. main; Segmentation fault occurred when executed that file. Any statement other than main; is written, for example unix; then it won't compile. why is this behaviour ! (2 Replies)
Discussion started by: techmonk
2 Replies

10. UNIX for Beginners Questions & Answers

A function that refuses to run anywhere else but main()

Hi. I have some code, that for some reason, I could not post it here in this post. Here's the address for it: #if 0 shc Version 4.0.1, Generic Shell Script Compiler GNU GPL Version 3 Md - Pastebin.com First off, I used "shc" to convert the code from shell script to C. And The... (6 Replies)
Discussion started by: ignatius
6 Replies
pthread_create(3C)					   Standard C Library Functions 					pthread_create(3C)

NAME
pthread_create - create a thread SYNOPSIS
cc -mt [ flag... ] file... -lpthread [ library... ] #include <pthread.h> int pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr, void *(*start_routine)(void*), void *restrict arg); DESCRIPTION
The pthread_create() function is used to create a new thread, with attributes specified by attr, within a process. If attr is NULL, the default attributes are used. (See pthread_attr_init(3C)). If the attributes specified by attr are modified later, the thread's attributes are not affected. Upon successful completion, pthread_create() stores the ID of the created thread in the location referenced by thread. The thread is created executing start_routine with arg as its sole argument. If the start_routine returns, the effect is as if there was an implicit call to pthread_exit() using the return value of start_routine as the exit status. Note that the thread in which main() was origi- nally invoked differs from this. When it returns from main(), the effect is as if there was an implicit call to exit() using the return value of main() as the exit status. The signal state of the new thread is initialised as follows: o The signal mask is inherited from the creating thread. o The set of signals pending for the new thread is empty. Default thread creation: pthread_t tid; void *start_func(void *), *arg; pthread_create(&tid, NULL, start_func, arg); This would have the same effect as: pthread_attr_t attr; pthread_attr_init(&attr); /* initialize attr with default */ /* attributes */ pthread_create(&tid, &attr, start_func, arg); User-defined thread creation: To create a thread that is scheduled on a system-wide basis, use: pthread_attr_init(&attr); /* initialize attr with default */ /* attributes */ pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); /* system-wide contention */ pthread_create(&tid, &attr, start_func, arg); To customize the attributes for POSIX threads, see pthread_attr_init(3C). A new thread created with pthread_create() uses the stack specified by the stackaddr attribute, and the stack continues for the number of bytes specified by the stacksize attribute. By default, the stack size is 1 megabyte for 32-bit processes and 2 megabyte for 64-bit pro- cesses (see pthread_attr_setstacksize(3C)). If the default is used for both the stackaddr and stacksize attributes, pthread_create() cre- ates a stack for the new thread with at least 1 megabyte for 32-bit processes and 2 megabyte for 64-bit processes. (For customizing stack sizes, see NOTES). If pthread_create() fails, no new thread is created and the contents of the location referenced by thread are undefined. RETURN VALUES
If successful, the pthread_create() function returns 0. Otherwise, an error number is returned to indicate the error. ERRORS
The pthread_create() function will fail if: EAGAIN The system lacked the necessary resources to create another thread, or the system-imposed limit on the total number of threads in a process PTHREAD_THREADS_MAX would be exceeded. EINVAL The value specified by attr is invalid. EPERM The caller does not have appropriate permission to set the required scheduling parameters or scheduling policy. EXAMPLES
Example 1 Example of concurrency with multithreading The following is an example of concurrency with multithreading. Since POSIX threads and Solaris threads are fully compatible even within the same process, this example uses pthread_create() if you execute a.out 0, or thr_create() if you execute a.out 1. Five threads are created that simultaneously perform a time-consuming function, sleep(10). If the execution of this process is timed, the results will show that all five individual calls to sleep for ten-seconds completed in about ten seconds, even on a uniprocessor. If a sin- gle-threaded process calls sleep(10) five times, the execution time will be about 50-seconds. The command-line to time this process is: POSIX threading /usr/bin/time a.out 0 Solaris threading /usr/bin/time a.out 1 /* cc thisfile.c -lthread -lpthread */ #define _REENTRANT /* basic 3-lines for threads */ #include <pthread.h> #include <thread.h> #define NUM_THREADS 5 #define SLEEP_TIME 10 void *sleeping(void *); /* thread routine */ int i; thread_t tid[NUM_THREADS]; /* array of thread IDs */ int main(int argc, char *argv[]) { if (argc == 1) { printf("use 0 as arg1 to use pthread_create() "); printf("or use 1 as arg1 to use thr_create() "); return(1); } switch (*argv[1]) { case '0': /* POSIX */ for ( i = 0; i < NUM_THREADS; i++) pthread_create(&tid[i], NULL, sleeping, (void *)SLEEP_TIME); for ( i = 0; i < NUM_THREADS; i++) pthread_join(tid[i], NULL); break; case '1': /* Solaris */ for ( i = 0; i < NUM_THREADS; i++) thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0, &tid[i]); while (thr_join(0, NULL, NULL) == 0) ; break; } /* switch */ printf("main() reporting that all %d threads have terminated ", i); return(0); } /* main */ void * sleeping(void *arg) { int sleep_time = (int)arg; printf("thread %d sleeping %d seconds ... ", thr_self(), sleep_time); sleep(sleep_time); printf(" thread %d awakening ", thr_self()); return (NULL); } If main() had not waited for the completion of the other threads (using pthread_join(3C) or thr_join(3C)), it would have continued to process concurrently until it reached the end of its routine and the entire process would have exited prematurely. See exit(2). ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Standard | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
fork(2), pthread_attr_init(3C), pthread_cancel(3C), pthread_exit(3C), pthread_join(3C), sysconf(3C), attributes(5), standards(5) NOTES
Multithreaded application threads execute independently of each other, so their relative behavior is unpredictable. Therefore, it is possi- ble for the thread executing main() to finish before all other user application threads. The pthread_join(3C)function, on the other hand, must specify the terminating thread (IDs) for which it will wait. A user-specified stack size must be greater than the value PTHREAD_STACK_MIN. A minimum stack size may not accommodate the stack frame for the user thread function start_func. If a stack size is specified, it must accommodate start_func requirements and the functions that it may call in turn, in addition to the minimum requirement. It is usually very difficult to determine the runtime stack requirements for a thread. PTHREAD_STACK_MIN specifies how much stack storage is required to execute a NULL start_func. The total runtime requirements for stack storage are dependent on the storage required to do run- time linking, the amount of storage required by library runtimes (as printf()) that your thread calls. Since these storage parameters are not known before the program runs, it is best to use default stacks. If you know your runtime requirements or decide to use stacks that are larger than the default, then it makes sense to specify your own stacks. SunOS 5.11 23 Mar 2005 pthread_create(3C)
All times are GMT -4. The time now is 05:16 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy