Sponsored Content
Top Forums Shell Programming and Scripting Bash script to compare two lists Post 302543873 by yazu on Tuesday 2nd of August 2011 10:19:54 AM
Old 08-02-2011
POSIX shell:
Code:
VAR1='me you him her'
VAR2='you me him'
for w in $VAR1; do                                                         
  if ! echo "$VAR2" | grep -q "$w" ; then
    changed=1
    VAR2="$VAR2 $w"
  fi
done
if [ "$changed" ]; then
  echo "changed: VAR1='$VAR1' VAR2='$VAR2'"
else
  echo "no changed: VAR1='$VAR1' VAR2='$VAR2'"
fi

This User Gave Thanks to yazu For This Post:
 

10 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

Compare lists of files

If I had a list of numbers in two different files, what would be the fastest and easiest way to find out which numbers in list B are not in list A without reading each number in list B one at a time and using grep thousands of times against list A? I have two very long lists of numbers and the... (4 Replies)
Discussion started by: keelba
4 Replies

2. UNIX for Dummies Questions & Answers

compare 2 very large lists of different length

I have two very large datasets (>100MB) in a simple vertical list format. They are of different size and with different order and formatting (e.g. whitespace and some other minor cruft that would thwart easy regex). Let's call them set1 and set2. I want to check set2 to see if it contains... (2 Replies)
Discussion started by: uiop44
2 Replies

3. Shell Programming and Scripting

Shell Script to Create non-duplicate lists from two lists

File_A contains Strings: a b c d File_B contains Strings: a c z Need to have script written in either sh or ksh. Derive resultant files (File_New_A and File_New_B) from lists File_A and File_B where string elements in File_New_A and File_New_B are listed below. Resultant... (7 Replies)
Discussion started by: mlv_99
7 Replies

4. UNIX for Dummies Questions & Answers

Compare 2 lists using a full and/or partial match at beginning of line?

hello all, I wonder if anybody might be able to help with this. I have file 1 and file2. Both files may contain thousands of lines that have variable contents. file1 234GH 5234BTW 89er 678tfg 234 234YT tfg456 wert 78gt gh23444 (7 Replies)
Discussion started by: Garrred
7 Replies

5. Programming

Python: Compare 2 word lists

Hi. I am trying to write a Python programme that compares two different text files which both contain a list of words. Each word has its own line worda wordb wordc I want to compare textfile 2 with textfile 1, and if there's a word in textfile 2 that is NOT in textfile 1, I want to... (6 Replies)
Discussion started by: Bloomy
6 Replies

6. Shell Programming and Scripting

Compare two lists with perl

Hi everybody! I'm trying to delete some elements from a list with two elements on each row agreeing with the elements in another list. Pratically I want a perl script able to take each element of the second list (that is a single column list), compare it with both elements of each row from the... (3 Replies)
Discussion started by: gabrysfe
3 Replies

7. Shell Programming and Scripting

compare two lists on two files

I have two files A and B listing ip addresses and all the ip addresses in B are in A, and A includes other ip addresses now I want to get the list of the ip addresses that are in A but not in B how to achieve this? thanks (1 Reply)
Discussion started by: esolvepolito
1 Replies

8. Homework & Coursework Questions

[Python] Compare 2 lists

Hello, I'm new to the python programming, and I have a question. I have to write a program that prints a receipt for a restaurant. The input is a list which looks like: product1 product3 product8 .... In the other input file there is a list which looks like: product1 coffee 5,00... (1 Reply)
Discussion started by: dagendy
1 Replies

9. Shell Programming and Scripting

Array compare bash script

Hello, i have a script that should compare between ${ARRAY} that contains all fstab record like this : >>echo ${ARRAY} / /boot between all mountpoints in my df that is stord in ${ARRAY2} >>echo ${ARRAY2} / /boot /dev/shm /var/spool/asterisk/monitor now i have this loop: for i in... (6 Replies)
Discussion started by: batchenr
6 Replies

10. UNIX for Beginners Questions & Answers

Compare date bash script

I all I have written a bash script for compare two date. One of those is a result of query, and another is current date. I have a problem with the format, because the first is 09/12/19 18:50:30 but for having this result I have to do d1DB=$(date -d "$valData" +'%m/%d/%y %T') and the second... (9 Replies)
Discussion started by: rdie77
9 Replies
SYSTEMD-SYSTEM.CONF(5)						systemd-system.conf					    SYSTEMD-SYSTEM.CONF(5)

NAME
systemd-system.conf, system.conf.d, systemd-user.conf, user.conf.d - System and session service manager configuration files SYNOPSIS
/etc/systemd/system.conf, /etc/systemd/system.conf.d/*.conf, /run/systemd/system.conf.d/*.conf, /lib/systemd/system.conf.d/*.conf /etc/systemd/user.conf, /etc/systemd/user.conf.d/*.conf, /run/systemd/user.conf.d/*.conf, /usr/lib/systemd/user.conf.d/*.conf DESCRIPTION
When run as a system instance, systemd interprets the configuration file system.conf and the files in system.conf.d directories; when run as a user instance, systemd interprets the configuration file user.conf and the files in user.conf.d directories. These configuration files contain a few settings controlling basic manager operations. CONFIGURATION DIRECTORIES AND PRECEDENCE
The default configuration is defined during compilation, so a configuration file is only needed when it is necessary to deviate from those defaults. By default, the configuration file in /etc/systemd/ contains commented out entries showing the defaults as a guide to the administrator. This file can be edited to create local overrides. When packages need to customize the configuration, they can install configuration snippets in /usr/lib/systemd/*.conf.d/. Files in /etc/ are reserved for the local administrator, who may use this logic to override the configuration files installed by vendor packages. The main configuration file is read before any of the configuration directories, and has the lowest precedence; entries in a file in any configuration directory override entries in the single configuration file. Files in the *.conf.d/ configuration subdirectories are sorted by their filename in lexicographic order, regardless of which of the subdirectories they reside in. When multiple files specify the same option, for options which accept just a single value, the entry in the file with the lexicographically latest name takes precedence. For options which accept a list of values, entries are collected as they occur in files sorted lexicographically. It is recommended to prefix all filenames in those subdirectories with a two-digit number and a dash, to simplify the ordering of the files. To disable a configuration file supplied by the vendor, the recommended way is to place a symlink to /dev/null in the configuration directory in /etc/, with the same filename as the vendor configuration file. OPTIONS
All options are configured in the "[Manager]" section: LogLevel=, LogTarget=, LogColor=, LogLocation=, DumpCore=yes, CrashChangeVT=no, CrashShell=no, CrashReboot=no, ShowStatus=yes, DefaultStandardOutput=journal, DefaultStandardError=inherit Configures various parameters of basic manager operation. These options may be overridden by the respective process and kernel command line arguments. See systemd(1) for details. CtrlAltDelBurstAction= Defines what action will be performed if user presses Ctrl-Alt-Delete more than 7 times in 2s. Can be set to "reboot-force", "poweroff-force", "reboot-immediate", "poweroff-immediate" or disabled with "none". Defaults to "reboot-force". CPUAffinity= Configures the initial CPU affinity for the init process. Takes a list of CPU indices or ranges separated by either whitespace or commas. CPU ranges are specified by the lower and upper CPU indices separated by a dash. JoinControllers=cpu,cpuacct net_cls,netprio Configures controllers that shall be mounted in a single hierarchy. By default, systemd will mount all controllers which are enabled in the kernel in individual hierarchies, with the exception of those listed in this setting. Takes a space-separated list of comma-separated controller names, in order to allow multiple joined hierarchies. Defaults to 'cpu,cpuacct'. Pass an empty string to ensure that systemd mounts all controllers in separate hierarchies. Note that this option is only applied once, at very early boot. If you use an initial RAM disk (initrd) that uses systemd, it might hence be necessary to rebuild the initrd if this option is changed, and make sure the new configuration file is included in it. Otherwise, the initrd might mount the controller hierarchies in a different configuration than intended, and the main system cannot remount them anymore. RuntimeWatchdogSec=, ShutdownWatchdogSec= Configure the hardware watchdog at runtime and at reboot. Takes a timeout value in seconds (or in other time units if suffixed with "ms", "min", "h", "d", "w"). If RuntimeWatchdogSec= is set to a non-zero value, the watchdog hardware (/dev/watchdog or the path specified with WatchdogDevice= or the kernel option systemd.watchdog-device=) will be programmed to automatically reboot the system if it is not contacted within the specified timeout interval. The system manager will ensure to contact it at least once in half the specified timeout interval. This feature requires a hardware watchdog device to be present, as it is commonly the case in embedded and server systems. Not all hardware watchdogs allow configuration of the reboot timeout, in which case the closest available timeout is picked. ShutdownWatchdogSec= may be used to configure the hardware watchdog when the system is asked to reboot. It works as a safety net to ensure that the reboot takes place even if a clean reboot attempt times out. By default RuntimeWatchdogSec= defaults to 0 (off), and ShutdownWatchdogSec= to 10min. These settings have no effect if a hardware watchdog is not available. WatchdogDevice= Configure the hardware watchdog device that the runtime and shutdown watchdog timers will open and use. Defaults to /dev/watchdog. This setting has no effect if a hardware watchdog is not available. CapabilityBoundingSet= Controls which capabilities to include in the capability bounding set for PID 1 and its children. See capabilities(7) for details. Takes a whitespace-separated list of capability names as read by cap_from_name(3). Capabilities listed will be included in the bounding set, all others are removed. If the list of capabilities is prefixed with ~, all but the listed capabilities will be included, the effect of the assignment inverted. Note that this option also affects the respective capabilities in the effective, permitted and inheritable capability sets. The capability bounding set may also be individually configured for units using the CapabilityBoundingSet= directive for units, but note that capabilities dropped for PID 1 cannot be regained in individual units, they are lost for good. SystemCallArchitectures= Takes a space-separated list of architecture identifiers. Selects from which architectures system calls may be invoked on this system. This may be used as an effective way to disable invocation of non-native binaries system-wide, for example to prohibit execution of 32-bit x86 binaries on 64-bit x86-64 systems. This option operates system-wide, and acts similar to the SystemCallArchitectures= setting of unit files, see systemd.exec(5) for details. This setting defaults to the empty list, in which case no filtering of system calls based on architecture is applied. Known architecture identifiers are "x86", "x86-64", "x32", "arm" and the special identifier "native". The latter implicitly maps to the native architecture of the system (or more specifically, the architecture the system manager was compiled for). Set this setting to "native" to prohibit execution of any non-native binaries. When a binary executes a system call of an architecture that is not listed in this setting, it will be immediately terminated with the SIGSYS signal. TimerSlackNSec= Sets the timer slack in nanoseconds for PID 1, which is inherited by all executed processes, unless overridden individually, for example with the TimerSlackNSec= setting in service units (for details see systemd.exec(5)). The timer slack controls the accuracy of wake-ups triggered by system timers. See prctl(2) for more information. Note that in contrast to most other time span definitions this parameter takes an integer value in nano-seconds if no unit is specified. The usual time units are understood too. DefaultTimerAccuracySec= Sets the default accuracy of timer units. This controls the global default for the AccuracySec= setting of timer units, see systemd.timer(5) for details. AccuracySec= set in individual units override the global default for the specific unit. Defaults to 1min. Note that the accuracy of timer units is also affected by the configured timer slack for PID 1, see TimerSlackNSec= above. DefaultTimeoutStartSec=, DefaultTimeoutStopSec=, DefaultRestartSec= Configures the default timeouts for starting and stopping of units, as well as the default time to sleep between automatic restarts of units, as configured per-unit in TimeoutStartSec=, TimeoutStopSec= and RestartSec= (for services, see systemd.service(5) for details on the per-unit settings). For non-service units, DefaultTimeoutStartSec= sets the default TimeoutSec= value. DefaultTimeoutStartSec= and DefaultTimeoutStopSec= default to 90s. DefaultRestartSec= defaults to 100ms. DefaultStartLimitIntervalSec=, DefaultStartLimitBurst= Configure the default unit start rate limiting, as configured per-service by StartLimitIntervalSec= and StartLimitBurst=. See systemd.service(5) for details on the per-service settings. DefaultStartLimitIntervalSec= defaults to 10s. DefaultStartLimitBurst= defaults to 5. DefaultEnvironment= Sets manager environment variables passed to all executed processes. Takes a space-separated list of variable assignments. See environ(7) for details about environment variables. Example: DefaultEnvironment="VAR1=word1 word2" VAR2=word3 "VAR3=word 5 6" Sets three variables "VAR1", "VAR2", "VAR3". DefaultCPUAccounting=, DefaultBlockIOAccounting=, DefaultMemoryAccounting=, DefaultTasksAccounting=, DefaultIPAccounting= Configure the default resource accounting settings, as configured per-unit by CPUAccounting=, BlockIOAccounting=, MemoryAccounting=, TasksAccounting= and IPAccounting=. See systemd.resource-control(5) for details on the per-unit settings. DefaultTasksAccounting= defaults to on, the other four settings to off. DefaultTasksMax= Configure the default value for the per-unit TasksMax= setting. See systemd.resource-control(5) for details. This setting applies to all unit types that support resource control settings, with the exception of slice units. DefaultLimitCPU=, DefaultLimitFSIZE=, DefaultLimitDATA=, DefaultLimitSTACK=, DefaultLimitCORE=, DefaultLimitRSS=, DefaultLimitNOFILE=, DefaultLimitAS=, DefaultLimitNPROC=, DefaultLimitMEMLOCK=, DefaultLimitLOCKS=, DefaultLimitSIGPENDING=, DefaultLimitMSGQUEUE=, DefaultLimitNICE=, DefaultLimitRTPRIO=, DefaultLimitRTTIME= These settings control various default resource limits for units. See setrlimit(2) for details. The resource limit is possible to specify in two formats, value to set soft and hard limits to the same value, or soft:hard to set both limits individually (e.g. DefaultLimitAS=4G:16G). Use the string infinity to configure no limit on a specific resource. The multiplicative suffixes K (=1024), M (=1024*1024) and so on for G, T, P and E may be used for resource limits measured in bytes (e.g. DefaultLimitAS=16G). For the limits referring to time values, the usual time units ms, s, min, h and so on may be used (see systemd.time(7) for details). Note that if no time unit is specified for DefaultLimitCPU= the default unit of seconds is implied, while for DefaultLimitRTTIME= the default unit of microseconds is implied. Also, note that the effective granularity of the limits might influence their enforcement. For example, time limits specified for DefaultLimitCPU= will be rounded up implicitly to multiples of 1s. These settings may be overridden in individual units using the corresponding LimitXXX= directives. Note that these resource limits are only defaults for units, they are not applied to PID 1 itself. SEE ALSO
systemd(1), systemd.directives(7), systemd.exec(5), systemd.service(5), environ(7), capabilities(7) systemd 237 SYSTEMD-SYSTEM.CONF(5)
All times are GMT -4. The time now is 01:27 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy