Sponsored Content
Full Discussion: High performance Linkpack
Special Forums UNIX and Linux Applications High Performance Computing High performance Linkpack Post 302429432 by rahul_viz on Monday 14th of June 2010 11:56:39 AM
Old 06-14-2010
High performance Linkpack

hello everyone ,

Im new to HPL. i wanted to know whether High performance linpack solves linear
system of equations for single precision airthmatic on LINUX.

it works for double precision , so is there any HPL version which is for single precision.\

thanks .
 

5 More Discussions You Might Find Interesting

1. AIX

Performance Problem - High CPU utilization

Hello everybody. I have a problem with my AIX 5.3. Recently my unix shows a high cpu utilization with sar or topas. I need to find what I have to do to solve this problem, in fact, I don't know what is my problem. I had the same problem with another AIX 5.3 running the same... (2 Replies)
Discussion started by: wilder.mellotto
2 Replies

2. High Performance Computing

High Performance Computing

I am interested in setting up some High Performance Computing clusters and would like to get people's views and experiences on this. I have 2 requirements: 1. Compute clusters to do fast cpu intensive computations 2. Storage clusters of parallel and extendable filesystems spread across many... (6 Replies)
Discussion started by: humbletech99
6 Replies

3. High Performance Computing

What does high performance computing mean?

Sorry, I am not really from a computer science background. But from the subject of it, does it mean something like multi processor programming? distributed computing? like using erlang? Sound like it, which excite me. I just had a 3 day crash course in erlang and "Cocurrency oriented programming"... (7 Replies)
Discussion started by: linuxpenguin
7 Replies

4. Emergency UNIX and Linux Support

Performance investigation, very high runq-sz %runocc

I've just been handed a hot potato from a colleague who left :(... our client has been complaining about slow performance on one of our servers. I'm not very experienced in investigating performance issues so I hoping someone will be so kind to provide some guidance Here is an overview of the... (8 Replies)
Discussion started by: Solarius
8 Replies

5. High Performance Computing

High Performance Linpack Compiling Issue

I'm trying to compile Linpack on a Ubuntu cluster. I'm running MPI. I've modified the following values to fit my system TOPdir MPdir LAlib CC LINKER. When compiling I get the following error: (the error is at the end, the other errors in between are because I've ran the script several times so... (0 Replies)
Discussion started by: JPJPJPJP
0 Replies
zcgesv.f(3)							      LAPACK							       zcgesv.f(3)

NAME
zcgesv.f - SYNOPSIS
Functions/Subroutines subroutine zcgesv (N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO) ZCGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement) Function/Subroutine Documentation subroutine zcgesv (integerN, integerNRHS, complex*16, dimension( lda, * )A, integerLDA, integer, dimension( * )IPIV, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, complex*16, dimension( n, * )WORK, complex, dimension( * )SWORK, double precision, dimension( * )RWORK, integerITER, integerINFO) ZCGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement) Purpose: ZCGESV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices. ZCGESV first attempts to factorize the matrix in COMPLEX and use this factorization within an iterative refinement procedure to produce a solution with COMPLEX*16 normwise backward error quality (see below). If the approach fails the method switches to a COMPLEX*16 factorization and solve. The iterative refinement is not going to be a winning strategy if the ratio COMPLEX performance over COMPLEX*16 performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ILAENV in the future. Up to now, we always try iterative refinement. The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we have: RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where o ITER is the number of the current iteration in the iterative refinement process o RNRM is the infinity-norm of the residual o XNRM is the infinity-norm of the solution o ANRM is the infinity-operator-norm of the matrix A o EPS is the machine epsilon returned by DLAMCH('Epsilon') The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively. Parameters: N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A. On exit, if iterative refinement has been successfully used (INFO.EQ.0 and ITER.GE.0, see description below), then A is unchanged, if double precision factorization has been used (INFO.EQ.0 and ITER.LT.0, see description below), then the array A contains the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i). Corresponds either to the single precision factorization (if INFO.EQ.0 and ITER.GE.0) or the double precision factorization (if INFO.EQ.0 and ITER.LT.0). B B is COMPLEX*16 array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX*16 array, dimension (LDX,NRHS) If INFO = 0, the N-by-NRHS solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). WORK WORK is COMPLEX*16 array, dimension (N*NRHS) This array is used to hold the residual vectors. SWORK SWORK is COMPLEX array, dimension (N*(N+NRHS)) This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. RWORK RWORK is DOUBLE PRECISION array, dimension (N) ITER ITER is INTEGER < 0: iterative refinement has failed, COMPLEX*16 factorization has been performed -1 : the routine fell back to full precision for implementation- or machine-specific reasons -2 : narrowing the precision induced an overflow, the routine fell back to full precision -3 : failure of CGETRF -31: stop the iterative refinement after the 30th iterations > 0: iterative refinement has been sucessfully used. Returns the number of iterations INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) computed in COMPLEX*16 is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 201 of file zcgesv.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zcgesv.f(3)
All times are GMT -4. The time now is 04:42 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy