Sponsored Content
Full Discussion: Intimate Shared Memory (ISM)
Operating Systems Solaris Intimate Shared Memory (ISM) Post 302363494 by sprout009 on Tuesday 20th of October 2009 12:42:23 PM
Old 10-20-2009
Ok, I'll use the prstat -Z for the next slow response time. Since this doesn't occur every day.

I already use capped for physical, locked, and swap.

I'm not sure that we use any solaris update, currently the OS version is sunOS 5.10.

I don't recall if I ever mention this, but the swap -s in my global zone is works fine, the value of pages swapped in/out is not 0, meanwhile in container (in which the running out of memory occur) the value of pages swapped in/out from command swap -s is 0.

Thanks.
 

10 More Discussions You Might Find Interesting

1. Programming

Shared memory

Dear Reader, Is is necessary to attach / dettach the shared memory segments for write operations , if more than one program is accessing same shared memory segments.. I have used semaphore mutex and still I'm getting segmentation fault when I write to the segment when other program is already... (1 Reply)
Discussion started by: joseph_shibu
1 Replies

2. UNIX for Advanced & Expert Users

Shared memory shortage but lots of unused memory

I am running HP-UX B.11.11. I'm increasing a parameter for a database engine so that it uses more memory to buffer the disk drive (to speed up performance). I have over 5GB of memory not being used. But when I try to start the DB with the increased buffer parameter I get told. "Not... (1 Reply)
Discussion started by: cjcamaro
1 Replies

3. Linux

all about shared memory

Hi all :confused: , I am new to unix.I have been asked to implement shared memory in user's mode.What does this mean?What is the difference it makes in kernel mode and in users mode?What are the advantages of this impemenation(user's mode)? And also i would like to know why exactly shared... (0 Replies)
Discussion started by: vijaya2006
0 Replies

4. Programming

help with shared memory

what i want to do is have an int that can been written into by 2 processes but my code doesn't seem to work. #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> #include <sys/shm.h> #include<stdio.h> #define KEY1 (1492) int main() { int shmid; volatile int * addr;... (6 Replies)
Discussion started by: ddx08
6 Replies

5. Programming

memory sharing - not shared memory -

hi, this is the problem: i want to swap a linked list between 4 processes (unrelated), is there any way i can do that just by sending a pointer to a structure? //example typedef struct node { int x; char c; struct node *next; } node; or i should send the items ( x,c ) by... (9 Replies)
Discussion started by: elzalem
9 Replies

6. Programming

Shared memory in shared library

I need to create a shared library to access an in memory DB. The DB is not huge, but big enough to make it cumbersome to carry around in every single process using the shared library. Luckily, it is pretty static information, so I don't need to worry much about synchronizing the data between... (12 Replies)
Discussion started by: DreamWarrior
12 Replies

7. Programming

Shared memory for shared library

I am writing a shared library in Linux (but compatible with other UNIXes) and I want to allow multiple instances to share a piece of memory -- 1 byte is enough. What's the "best" way to do this? I want to optimize for speed and portability. Obviously, I'll have to worry about mutual exclusion. (0 Replies)
Discussion started by: otheus
0 Replies

8. UNIX for Advanced & Expert Users

Shared Memory

Hi, Using ipcs we can see shared memory, etc.. details. How can I add/remove shared memory(command name)? Thanks, Naga:cool: (2 Replies)
Discussion started by: Nagapandi
2 Replies

9. AIX

shared memory

1.How to know wich process is using the shared memory? 2.How to flush (release) the process from the shared memory? (1 Reply)
Discussion started by: pchangba
1 Replies

10. Programming

Shared library with acces to shared memory.

Hello. I am new to this forum and I would like to ask for advice about low level POSIX programming. I have to implement a POSIX compliant C shared library. A file will have some variables and the shared library will have some functions which need those variables. There is one special... (5 Replies)
Discussion started by: iamjag
5 Replies
swap(1M)                                                  System Administration Commands                                                  swap(1M)

NAME
swap - swap administrative interface SYNOPSIS
/usr/sbin/swap -a swapname [swaplow] [swaplen] /usr/sbin/swap -d swapname [swaplow] /usr/sbin/swap -l /usr/sbin/swap -s DESCRIPTION
The swap utility provides a method of adding, deleting, and monitoring the system swap areas used by the memory manager. OPTIONS
The following options are supported: -a swapname Add the specified swap area. This option can only be used by the super-user. swapname is the name of the swap file: for example, /dev/dsk/c0t0d0s1 or a regular file. swaplow is the offset in 512-byte blocks into the file where the swap area should begin. swaplen is the desired length of the swap area in 512-byte blocks. The value of swaplen can not be less than 16. For example, if n blocks are specified, then (n-1) blocks would be the actual swap length. swaplen must be at least one page in length. The size of a page of memory can be determined by using the pagesize command. See pagesize(1). Since the first page of a swap file is automatically skipped, and a swap file needs to be at least one page in length, the minimum size should be a multiple of 2 pagesize bytes. The size of a page of memory is machine dependent. swaplow + swaplen must be less than or equal to the size of the swap file. If swaplen is not specified, an area will be added starting at swaplow and extending to the end of the designated file. If neither swaplow nor swaplen are specified, the whole file will be used except for the first page. Swap areas are normally added automatically during system startup by the /sbin/swapadd script. This script adds all swap areas which have been specified in the /etc/vfstab file; for the syntax of these specifications, see vfstab(4). To use an NFS or local file-system swapname, you should first create a file using mkfile(1M). A local file-system swap file can now be added to the running system by just running the swap -a command. For NFS mounted swap files, the server needs to export the file. Do this by performing the following steps: 1. Add the following line to /etc/dfs/dfstab: share -F nfs -o rw=clientname,root=clientname path-to-swap-file 2. Run shareall(1M). 3. Have the client add the following line to /etc/vfstab: server:path-to-swap-file - local-path-to-swap-filenfs --- local-path-to-swap-file -- swap --- 4. Have the client run mount: # mount local-path-to-swap-file 5. The client can then run swap -a to add the swap space: # swap -a local-path-to-swap-file -d swapname Delete the specified swap area. This option can only be used by the super-user. swapname is the name of the swap file: for example, /dev/dsk/c0t0d0s1 or a regular file. swaplow is the offset in 512-byte blocks into the swap area to be deleted. If swaplow is not specified, the area will be deleted starting at the second page. When the command completes, swap blocks can no longer be allocated from this area and all swap blocks previously in use in this swap area have been moved to other swap areas. -l List the status of all the swap areas. The output has five columns: path The path name for the swap area. dev The major/minor device number in decimal if it is a block special device; zeroes otherwise. swaplo The swaplow value for the area in 512-byte blocks. blocks The swaplen value for the area in 512-byte blocks. free The number of 512-byte blocks in this area that are not currently allocated. The list does not include swap space in the form of physical memory because this space is not associated with a particular swap area. If swap -l is run while swapname is in the process of being deleted (by swap -d), the string INDEL will appear in a sixth column of the swap stats. -s Print summary information about total swap space usage and availability: allocated The total amount of swap space in bytes currently allocated for use as backing store. reserved The total amount of swap space in bytes not currently allocated, but claimed by memory mappings for possi- ble future use. used The total amount of swap space in bytes that is either allocated or reserved. available The total swap space in bytes that is currently available for future reservation and allocation. These numbers include swap space from all configured swap areas as listed by the -l option, as well swap space in the form of physical memory. USAGE
On the 32-bit operating system, only the first 2 Gbytes -1 are used for swap devices greater than or equal to 2 Gbytes in size. On the 64-bit operating system, a block device larger than 2 Gbytes can be fully utilized for swap up to 2**63 -1 bytes. ENVIRONMENT VARIABLES
See environ(5) for descriptions of the following environment variables that affect the execution of swap: LC_CTYPE and LC_MESSAGE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Availability |SUNWcsu | +-----------------------------+-----------------------------+ SEE ALSO
pagesize(1), mkfile(1M), shareall(1M), getpagesize(3C), vfstab(4), attributes(5), largefile(5) WARNINGS
No check is done to determine if a swap area being added overlaps with an existing file system. SunOS 5.10 20 Jan 2004 swap(1M)
All times are GMT -4. The time now is 10:58 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy