Sponsored Content
Operating Systems AIX Problem mapping LUN disk from VIOS to the LPAR Post 302306013 by solaix14 on Friday 10th of April 2009 11:56:05 AM
Old 04-10-2009
Problem mapping LUN disk from VIOS to the LPAR

Hello guys,
It would be so nice of you if someone can provide me with these informations.
1) My SAN group assigned 51G of LUN space to the VIO server.I ran cfgdev to discover the newly added LUN. Unfortunately most of the disks that are in VIO server is 51G. How would I know which is the newly added 51G?
SAN team gave me some information like: Host Lun# 86 and symmetric disk ID# 750.
How can I use these information in the VIO to pin-point to the right LUN.

2) I tried to map the LUN to the LPAR (pure guessing of the disk#), using
mkdev -vdev hdiskxx -vadapter vhostx
All I got as an output is:
"0514-070: Only disks that support multi-path I/O or which have a PVID may be used as a virtual target device"
and yes when I did lspv -free on VIO server the disk I thought is the one didn't have PVID number assigned to it.

Any help will be highly appreciated..
thank you.
 

10 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

LUN mapping

Hi, We recently purchased a 3 tb RAID. In the setup, it created 2 slices, one 2 tb and one 1 tb slice. Right now only the 2 tb slice is visible when booting up. I was told that the second slice needs to be mapped to a lun and a port like the first slice is. Does anyone know how I would go... (1 Reply)
Discussion started by: user23
1 Replies

2. AIX

LPAR and vio disk mapping

We have a frame the uses 2 vios that assign disk storage to LPAR's. We have a LPAr with multiple disk and I want to know how do I tell which vio is serving the disk. For example the LPAr has hdisk 0, 1, 2, 3 all the same size. I want to know which vio is serving hdisk0, 1. (4 Replies)
Discussion started by: daveisme
4 Replies

3. AIX

VIOS to lpar Mapping

Hello, I have created mapping of 2 virtual adapters for Lpars using following command: mkvdev -vdev ipanalyzerlv1 -vadapter vhost11 mkvdev -vdev ipanalyzerlv -vadapter vhost13 The above two commands were succesfull but when I want to map the third virtual device to the same Lpar than... (3 Replies)
Discussion started by: Vit0_Corleone
3 Replies

4. AIX

What's the difference between VIOS and LPAR?

Hi All, Besides the licenses on VIO and LPAR. What's the main difference with the two? I have installed VIO, my manager told me so, because it's like a free hypervisor but I never installed LPAR before. How do you install it? And if you can give more info on the two, that would be great. ... (5 Replies)
Discussion started by: itik
5 Replies

5. AIX

Sharing lun between 2 LPAR

Hi, I would like to know how to share lun in between 2 lpars. I have run tbe below command on vio server. /usr/sbin/chdev -l hdisk1 -a reserve_policy=no_reserve after above command I am able to assign lun on one Lpar. but it is not visible to other lpar. even after this I have run... (3 Replies)
Discussion started by: manoj.solaris
3 Replies

6. AIX

VIOS FC Mapping/NPIV questions

Please forgive me here as I don't fully understand what I am talking about here so if I use the wrong terminology please overlook me. We have multiple AIX LPARs on the managed system with two VIO Servers. A Co-Worker and I are trying to set up a new LPAR client (The guy that knows this is out)... (14 Replies)
Discussion started by: juredd1
14 Replies

7. AIX

List LPAR from VIOS

Hi guys, does anyone know how to get a list of the LPAR running on VIOS? Thanks! (5 Replies)
Discussion started by: cecco16
5 Replies

8. AIX

VIOS LPAR Error 0518

I am trying to install AIX 5.3 on one of the LPARs through VIOS but I get this error 0518 Reference Code Selection 0518 (Time stamp: 12/18/12 12:10:20 AM UTC) Starting kernel (Time stamp: 12/18/12 12:10:15 AM UTC) AIX is starting. (Time stamp: 12/18/12 12:10:15 AM... (10 Replies)
Discussion started by: filosophizer
10 Replies

9. AIX

Moving VIOS, LPAR's, HMC to different subnet

Hi, Just joined to new company with one Power 720 Express (8202-E4C) server and have no much experience with IBM systems. I am trying to move everything I mentioned to different subnet as required by customer contract (currently sitting on same subnet as company lan). Access to this subnet will... (8 Replies)
Discussion started by: spricer
8 Replies

10. AIX

VIOS: Extend virtual disk assigned to running lpar?

Hello, VIOS 2.2.1.4 using IVM. I'm trying to extend a virtual disk assigned to a running lpar so that I can expand the lpar's datavg and grow some filesystems for the user. Storage admin expanded the lun and new size was reflected in VIO right away. I then needed the storage pool to... (2 Replies)
Discussion started by: j_aix
2 Replies
SG_LUNS(8)							     SG3_UTILS								SG_LUNS(8)

NAME
sg_luns - send SCSI REPORT LUNS command or decode given LUN SYNOPSIS
sg_luns [--decode] [--help] [--hex] [--linux] [--maxlen=LEN] [--quiet] [--raw] [--select=SR] [--verbose] [--version] DEVICE sg_luns --test=ALUN [--hex] [--verbose] DESCRIPTION
In the first form shown in the SYNOPSIS this utility sends the SCSI REPORT LUNS command to the DEVICE and outputs the response. The response should be a list of LUNs ("a LUN inventory") for the I_T nexus associated with the DEVICE. Roughly speaking that is all LUNs that share the target device that the REPORT LUNS command is sent through. In the SPC-3 and SPC-4 SCSI standards support for the REPORT LUNS command is mandatory. When the --test=ALUN option is given (the second form in the SYNOPSIS), then the ALUN value is decoded as outlined in SAM-3, SAM-4 and SAM-5 (revision 13, section 4.7) . Where required below the first form shown in the SYNOPSIS is called "device mode" and the second form is called "test mode". OPTIONS
Arguments to long options are mandatory for short options as well. -d, --decode decode LUNs into their component parts, as described in the LUN section of SAM-3, SAM-4 and SAM-5. -h, --help output the usage message then exit. -H, --hex [device mode] when given once this utility will output the SCSI response (i.e. the data-out buffer) to the REPORT LUNS command in ASCII hex then exit. When given twice it causes --decode to output component fields in hex rather than decimal. -H, --hex [test mode] when this option is given, then decoded component fields of ALUN are output in hex. -l, --linux this option is only available in Linux. After the T10 representation of each 64 bit LUN (in 16 hexadecimal digits), if this option is given then to the right, in square brackets, is the Linux LUN integer in decimal. If the --hex option is given twice (e.g. -HH) as well then the Linux LUN integer is output in hexadecimal. -m, --maxlen=LEN where LEN is the (maximum) response length in bytes. It is placed in the cdb's "allocation length" field. If not given (or LEN is zero) then 8192 is used. The maximum allowed value of LEN is 1048576. -q, --quiet output only the ASCII hex rendering of each report LUN, one per line. Without the --quiet option, there is header information printed before the LUN listing. -r, --raw output the SCSI response (i.e. the data-out buffer) in binary (to stdout). -s, --select=SR this option sets the SELECT REPORT field (SR) in the SCSI REPORT LUNS command. The default value is 0. For detailed information see the REPORT LUNS command in SPC (most recent is SPC-4 revision 36e in section 6.33). To simplify, for the I_T nexus associated with the DEVICE, the meanings of the SR values defined to date for SPC-4 are: 0 : all LUNs excluding well known logical units 1 : well known logical units 2 : all LUNs Values between 0xf8 and 0xff (inclusive) are vendor specific (SPC-4 rev 36e), other values greater than 2 are reserved. This utility will accept any value between 0 and 255 (0xff) for SR . -t, --test=ALUN ALUN is assumed to be a hexadecimal number in ASCII hex or the letter 'L' followed by a decimal number (see below). The hexadecimal number can be up to 64 bits in size (i.e. 16 hexadecimal digits) and is padded to the right if less than 16 hexadecimal digits are given (e.g. --test=0122003a represents T10 LUN 0122003a00000000). ALUN may be prefixed by '0x' or '0X' (e.g. the previous example could have been --test=0x0122003a). ALUN may also be given with spaces or tabs between each byte (or other grouping) but then ALUN would need to be surrounded by single or double quotes. In the decimal number case (i.e. following a 'L') that number is assumed to be a Linux "word flipped" LUN which is converted into a T10 LUN representation and printed. In both cases the number is interpreted as a LUN and decoded as if the --decode option had been given. Also when ALUN is a hexadecimal number it can have a trailing 'L' in which case the corresponding Linux "word flipped" LUN value is output. The LUN is decoded in all cases. -v, --verbose increase the level of verbosity, (i.e. debug output). -V, --version print the version string and then exit. NOTES
The SCSI REPORT LUNS command is important for Logical Unit (LU) discovery. After a target device is discovered (usually via some transport specific mechanism), a REPORT LUNS command should either be sent to LUN 0 (which is Peripheral device addressing method with bus_id=0 and target/lun=0) or to the REPORT LUNS well known LUN (i.e. 0xc101000000000000). SAM-5 requires that one of these responds with an inventory of LUNS that are contained in this target device. In test mode, if the --hex option is given once then in the decoded output, some of the component fields are printed in hex with leading zeros. The leading zeros are to indicate the size of the component field. For example: in the Peripheral device addressing method (16 bits overall), the bus ID is 6 bits wide and the target/LUN field is 8 bits wide; so both are shown with two hex digits (e.g. bus_id=0x02, tar- get=0x3a). EXAMPLES
Typically by the time user space programs get to run, SCSI LUs have been discovered. In Linux the lsscsi utility lists the LUs that are currently present. The LUN of a device (LU) is the fourth element in the tuple at the beginning of each line. Below we see a target (or "I_T Nexus": "6:0:0") has two LUNS: 1 and 49409. If 49409 is converted into T10 LUN format it is 0xc101000000000000 which is the REPORT LUNS well known LUN. # lsscsi -g [6:0:0:1] disk Linux scsi_debug 0004 /dev/sdb /dev/sg1 [6:0:0:49409]wlun Linux scsi_debug 0004 - /dev/sg2 We could send a REPORT LUNS command to either /dev/sdb, /dev/sg1 or /dev/sg2 and get the same result. Below we use /dev/sg1 : # sg_luns /dev/sg1 Lun list length = 8 which imples 1 lun entry Report luns [select_report=0x0]: 0001000000000000 That is a bit noisy so cut down the clutter with --quiet: # sg_luns -q /dev/sg1 0001000000000000 Now decode that LUN into its component parts: # sg_luns -d -q /dev/sg1 0001000000000000 Peripheral device addressing: lun=1 Would like to see how wide that component LUN field is: # sg_luns -d -q -HH /dev/sg1 0001000000000000 Peripheral device addressing: lun=0x01 So it is 8 bits wide (actually between 5 and 8 bits wide, inclusive). Now use --select=1 to find out if there are any well known LUNs: # sg_luns -q -s 1 /dev/sg1 c101000000000000 So how many LUNs do we have all together (associated with the current I_T Nexus): # sg_luns -q -s 2 /dev/sg1 0001000000000000 c101000000000000 # sg_luns -q -s 2 -d /dev/sg1 0001000000000000 Peripheral device addressing: lun=1 c101000000000000 REPORT LUNS well known logical unit The following example uses the --linux option and is not available in other operating systems. The extra number in square brackets is the Linux version of T10 LUN shown at the start of the line. # sg_luns -q -s 2 -l /dev/sg1 0001000000000000 [1] c101000000000000 [49409] Now we use the --test= option to decode LUNS input on the command line (rather than send a REPORT LUNS command and act on the response): # sg_luns --test=0001000000000000 Decoded LUN: Peripheral device addressing: lun=1 # sg_luns --test="c1 01" Decoded LUN: REPORT LUNS well known logical unit # sg_luns -t 0x023a004b -H Decoded LUN: Peripheral device addressing: bus_id=0x02, target=0x3a >>Second level addressing: Peripheral device addressing: lun=0x4b The next example is Linux specific as we try to find out what the Linux LUN 49409 translates to in the T10 world: # sg_luns --test=L49409 64 bit LUN in T10 preferred (hex) format: c1 01 00 00 00 00 00 00 Decoded LUN: REPORT LUNS well known logical unit And the mapping between T10 and Linux LUN representations can be done the other way: # sg_luns -t c101L Linux 'word flipped' integer LUN representation: 49409 Decoded LUN: REPORT LUNS well known logical unit EXIT STATUS
The exit status of sg_luns is 0 when it is successful. Otherwise see the sg3_utils(8) man page. AUTHORS
Written by Douglas Gilbert. REPORTING BUGS
Report bugs to <dgilbert at interlog dot com>. COPYRIGHT
Copyright (C) 2004-2013 Douglas Gilbert This software is distributed under a FreeBSD license. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR- POSE. SEE ALSO
sg_inq(8) sg3_utils-1.36 May 2013 SG_LUNS(8)
All times are GMT -4. The time now is 10:55 AM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy