Sponsored Content
Top Forums Shell Programming and Scripting How to write a daemon in Unix? Post 302186782 by kpit on Friday 18th of April 2008 03:47:02 AM
Old 04-18-2008
Kpit

HI Glenn i tired this code it gives me an error "Can't find file" & still echoes the output desired, i would also like to add sleep intervals within the loop can you explain or send the code to achieve that
 

9 More Discussions You Might Find Interesting

1. UNIX for Dummies Questions & Answers

Should a UNIX daemon process close open fds?

I have a UNIX daemon process that's been started by a parent process, an application server. The behavior of this daemon process is to inherit and use the app server's file descriptors (ports/sockets). When I shutdown the app server, the daemon continues to run, because there may be other... (1 Reply)
Discussion started by: kunalashar
1 Replies

2. Programming

How to write daemon?

Hi , I want to know how to write a daemon process. I also want to know the concept behind daemon processes. Any material or sample program will be great :) . Thanks in advance -sg (2 Replies)
Discussion started by: sg6876
2 Replies

3. UNIX for Dummies Questions & Answers

I would like to know Would you run the ‘identd’ daemon on UNIX servers?

Would you run the ‘identd' daemon on UNIX servers? can you please Explain. thanks in advance! (3 Replies)
Discussion started by: xoxouu
3 Replies

4. Shell Programming and Scripting

créating a daemon under unix

hi i want to create a daemon under unix or linux but i don't really know how so i will be grateful if you provide me links with examples or /andx how to do it thanks (2 Replies)
Discussion started by: student00
2 Replies

5. UNIX for Dummies Questions & Answers

How to write Pro*C daemon process using multithreading?

Hello, I am new to this forum and this is my first post here... I have never worked on either Pro*C or Multithreading..Now, i have to write a Pro*C, Multithreading daemon process.. I dont know where to start.. Can anybody help me with examples? 1. need to write a Pro*C multithreading... (0 Replies)
Discussion started by: kachiraju
0 Replies

6. Shell Programming and Scripting

How to write daemon in UNIX

Hi Guys, I hope this is the right forum to post this. I have a directory where files will be dumped at any time of the day and I want to run scripts as soon as new files come into the directory. How can I write a daemon that detects when new files have been uploaded to the directory? ... (1 Reply)
Discussion started by: regie101
1 Replies

7. Shell Programming and Scripting

Need to write a script to reformat a file in unix but not familiar with unix

unix script must do the fiollowing open a file containing comma delimited records > each record contains 10 fields > removes the 2nd field and use that same field containing fields 2 to 10 the original record after fprocessing should containing fields 1 and 3 a new erecord must be... (10 Replies)
Discussion started by: dwightja
10 Replies

8. Shell Programming and Scripting

Setting up a Daemon in UNIX

I have scheduled a crontab job in AIX 6.1 OS to run twice in an hour which runs for the whole day to process a load. The load which crontab kicks off needs files to arrive at a particular directory and if the files arrive, I process them. It so happens that for the 24 times the crontab... (2 Replies)
Discussion started by: gaugeta
2 Replies

9. UNIX for Beginners Questions & Answers

How to write a daemon script?

My requirement is to run two scripts simultaneously. Let say, script1.ksh is running in a loop : example: script1.ksh is: for i in 1 2 3 do script2.ksh 1 & #psedu code which is required to write here # if script 2.ksh is running, execute a script3.ksh (which actually check the... (2 Replies)
Discussion started by: sumitc
2 Replies
slaebz.f(3)							      LAPACK							       slaebz.f(3)

NAME
slaebz.f - SYNOPSIS
Functions/Subroutines subroutine slaebz (IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, NAB, WORK, IWORK, INFO) SLAEBZ Function/Subroutine Documentation subroutine slaebz (integerIJOB, integerNITMAX, integerN, integerMMAX, integerMINP, integerNBMIN, realABSTOL, realRELTOL, realPIVMIN, real, dimension( * )D, real, dimension( * )E, real, dimension( * )E2, integer, dimension( * )NVAL, real, dimension( mmax, * )AB, real, dimension( * )C, integerMOUT, integer, dimension( mmax, * )NAB, real, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO) SLAEBZ Purpose: SLAEBZ contains the iteration loops which compute and use the function N(w), which is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument w. It performs a choice of two types of loops: IJOB=1, followed by IJOB=2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose union contains the same eigenvalues as the union of the original intervals. The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. The output interval (AB(j,1),AB(j,2)] will contain eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. IJOB=3: It performs a binary search in each input interval (AB(j,1),AB(j,2)] for a point w(j) such that N(w(j))=NVAL(j), and uses C(j) as the starting point of the search. If such a w(j) is found, then on output AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output (AB(j,1),AB(j,2)] will be a small interval containing the point where N(w) jumps through NVAL(j), unless that point lies outside the initial interval. Note that the intervals are in all cases half-open intervals, i.e., of the form (a,b] , which includes b but not a . To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either. See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal Matrix", Report CS41, Computer Science Dept., Stanford University, July 21, 1966 Note: the arguments are, in general, *not* checked for unreasonable values. Parameters: IJOB IJOB is INTEGER Specifies what is to be done: = 1: Compute NAB for the initial intervals. = 2: Perform bisection iteration to find eigenvalues of T. = 3: Perform bisection iteration to invert N(w), i.e., to find a point which has a specified number of eigenvalues of T to its left. Other values will cause SLAEBZ to return with INFO=-1. NITMAX NITMAX is INTEGER The maximum number of "levels" of bisection to be performed, i.e., an interval of width W will not be made smaller than 2^(-NITMAX) * W. If not all intervals have converged after NITMAX iterations, then INFO is set to the number of non-converged intervals. N N is INTEGER The dimension n of the tridiagonal matrix T. It must be at least 1. MMAX MMAX is INTEGER The maximum number of intervals. If more than MMAX intervals are generated, then SLAEBZ will quit with INFO=MMAX+1. MINP MINP is INTEGER The initial number of intervals. It may not be greater than MMAX. NBMIN NBMIN is INTEGER The smallest number of intervals that should be processed using a vector loop. If zero, then only the scalar loop will be used. ABSTOL ABSTOL is REAL The minimum (absolute) width of an interval. When an interval is narrower than ABSTOL, or than RELTOL times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. This must be at least zero. RELTOL RELTOL is REAL The minimum relative width of an interval. When an interval is narrower than ABSTOL, or than RELTOL times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon. PIVMIN PIVMIN is REAL The minimum absolute value of a "pivot" in the Sturm sequence loop. This must be at least max |e(j)**2|*safe_min and at least safe_min, where safe_min is at least the smallest number that can divide one without overflow. D D is REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T. E E is REAL array, dimension (N) The offdiagonal elements of the tridiagonal matrix T in positions 1 through N-1. E(N) is arbitrary. E2 E2 is REAL array, dimension (N) The squares of the offdiagonal elements of the tridiagonal matrix T. E2(N) is ignored. NVAL NVAL is INTEGER array, dimension (MINP) If IJOB=1 or 2, not referenced. If IJOB=3, the desired values of N(w). The elements of NVAL will be reordered to correspond with the intervals in AB. Thus, NVAL(j) on output will not, in general be the same as NVAL(j) on input, but it will correspond with the interval (AB(j,1),AB(j,2)] on output. AB AB is REAL array, dimension (MMAX,2) The endpoints of the intervals. AB(j,1) is a(j), the left endpoint of the j-th interval, and AB(j,2) is b(j), the right endpoint of the j-th interval. The input intervals will, in general, be modified, split, and reordered by the calculation. C C is REAL array, dimension (MMAX) If IJOB=1, ignored. If IJOB=2, workspace. If IJOB=3, then on input C(j) should be initialized to the first search point in the binary search. MOUT MOUT is INTEGER If IJOB=1, the number of eigenvalues in the intervals. If IJOB=2 or 3, the number of intervals output. If IJOB=3, MOUT will equal MINP. NAB NAB is INTEGER array, dimension (MMAX,2) If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). If IJOB=2, then on input, NAB(i,j) should be set. It must satisfy the condition: N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), which means that in interval i only eigenvalues NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with IJOB=1. On output, NAB(i,j) will contain max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of the input interval that the output interval (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the the input values of NAB(k,1) and NAB(k,2). If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), unless N(w) > NVAL(i) for all search points w , in which case NAB(i,1) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) for all search points w , in which case NAB(i,2) will not be modified. Normally, NAB should be set to some distinctive value(s) before SLAEBZ is called. WORK WORK is REAL array, dimension (MMAX) Workspace. IWORK IWORK is INTEGER array, dimension (MMAX) Workspace. INFO INFO is INTEGER = 0: All intervals converged. = 1--MMAX: The last INFO intervals did not converge. = MMAX+1: More than MMAX intervals were generated. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes: (a) finding eigenvalues. In this case, SLAEBZ should have one or more initial intervals set up in AB, and SLAEBZ should be called with IJOB=1. This sets up NAB, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval i are desired, NAB(i,1) can be increased or NAB(i,2) decreased. For example, set NAB(i,1)=NAB(i,2)-1 to get the largest eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX no smaller than the value of MOUT returned by the call with IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the tolerance specified by ABSTOL and RELTOL. (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this case, start with a Gershgorin interval (a,b). Set up AB to contain 2 search intervals, both initially (a,b). One NVAL element should contain f-1 and the other should contain l , while C should contain a and b, resp. NAB(i,1) should be -1 and NAB(i,2) should be N+1, to flag an error if the desired interval does not lie in (a,b). SLAEBZ is then called with IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and w(l-r)=...=w(l+k) are handled similarly. Definition at line 318 of file slaebz.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slaebz.f(3)
All times are GMT -4. The time now is 11:30 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy