Sponsored Content
Top Forums Programming probs compiling with gcc + lpthread Post 302172152 by JamesGoh on Sunday 2nd of March 2008 10:14:59 PM
Old 03-02-2008
probs compiling with gcc + lpthread

Im trying to write a program atm which uses mutexes to control thread access to a certain code section ( the critical section).

However, whenever I compile the code using gcc I get the following message from gcc

Unresolved text symbol "pthread_mutex_lock"
Unresolved text symbol "pthread_mutex_unlock"


I initalise my mutex as follows, after including <pthread.h> in my code

Code:
pthread_mutex_init(&cs_mutex,NULL);

The critical section is accessed in the following way. Note that this code segment is generic as my threads perform the same functionality

Code:
pthread_mutex_lock(&cs_mutex);

/*
Do critical section stuff here

*/
pthread_mutex_unlock(&cs_mutex);




I have included the -lpthread (which is needed to support thread functionality in the program ) in the compiling command, so I cannot understand why my code is not compiling

Last edited by JamesGoh; 03-03-2008 at 12:01 AM..
 

10 More Discussions You Might Find Interesting

1. Shell Programming and Scripting

probs compiling lex

this is my lex file ------------ test.l %% printf("%c",yytext+'a'-'A');.ECHO; how do i compile it $ lex test.l cc lex.yy.c -o test -ll <------| | if this is correct do i add this line--------| @the command line or does it... (0 Replies)
Discussion started by: sinner
0 Replies

2. Programming

beginner at C: Need help compiling/linking with gcc

I'm trying to do something fairly simple but keep getting frustrating messages.. Here it is: I have 3 files: init.h <header> init.c <#include <curses.h> and "init.h"> main.c <#include "init.h"> now, how can I compile my main.c using gcc? ( I have a hard time making the init.o) ... (1 Reply)
Discussion started by: My_Name
1 Replies

3. Programming

syntax error while compiling in gcc

hello, i have a structure defined as follows struct Image { int lenght; int height; }; and i have another structure where i declare a array of the above structure struct ShapeImage { Image image; }; when i compile this code with gcc it shows me the following error : ... (3 Replies)
Discussion started by: svh
3 Replies

4. UNIX for Dummies Questions & Answers

errors compiling gcc 4.2.1

Hello, I have never had a successful compile on the 2.6 kernel. On every arch in which I try to compile gcc I get either "i686-pc-cygwin-ar command not found or "i686-suse-linux-ar command not found. This always happens during the make process after configure checks for ar and finds it's just ar.... (2 Replies)
Discussion started by: kwa71
2 Replies

5. Programming

gcc compiling with -DUSE_LONGLONG

Sorry for a silly question. I a program that need to compile with -DUSE_LONGLONG to turn on the long Int as the document of that program said so, but I really don't know how to do this. I normally do this: ./configure make make install and it works fine. But I don't know how to compile... (2 Replies)
Discussion started by: hiepng
2 Replies

6. Solaris

Problem compiling Samba 3.5.1 on Solaris 10 with gcc (3.4.6)

I'm getting this error when 'Linking shared library bin/libtalloc.so.2'... anyone know what's up here? Using CFLAGS = -O -I. -I/source/samba-3.5.1/source3 -I/source/samba-3.5.1/source3/../lib/popt -I/source/samba-3.5.1/source3/iniparser/src -Iinclude -I./include -I. -I. -I./../lib/replace... (6 Replies)
Discussion started by: son_t
6 Replies

7. Programming

gcc compiling error

I am using gcc to compile c objects on solaris 5.10 and hit the following error messages: /usr/include/sys/vfs.h:323: error: syntax error before "statvfs64_t" /usr/include/sys/vfs.h:334: error: syntax error before "statvfs64_t" gmake: *** Error 1 The c program files were copied over from... (3 Replies)
Discussion started by: med7006
3 Replies

8. Programming

Problem with static compiling - GCC

Hi guys. I want to compile three files: gcc -static main.c fib.c fib.h it is pure C i mean i use standard C library. but it gives me this error: /usr/bin/ld: cannot find -lc collect2: ld returned 1 exit status what should i do? (4 Replies)
Discussion started by: majid.merkava
4 Replies

9. Programming

Compiling a 64 bits program using gcc

Hi Everyone, I can ask what is the option to compile a 64 bits program using gcc. I have looked everywhere but can't find it. Before I used to use cc and the -q64 flag was the option to generate the 64 bits binary. Can anyone tell me what is the flags when using gcc. Thanks...... (3 Replies)
Discussion started by: arizah
3 Replies

10. UNIX for Beginners Questions & Answers

Compiling GCC 6.3.0 - Error with Library

First of all -- thanks for being patient with me. I hope I'm submitting this correctly. Also I haven't done UNIX Admin since the early 1990's. I'm actually a DBA. But, since I'm the one in the office with the UNIX experience, I'm the SA. I haven't been able to compile GCC 6.3.0 which I need... (9 Replies)
Discussion started by: PJ_Namias
9 Replies
PTHREAD_MUTEX(3)					     Library Functions Manual						  PTHREAD_MUTEX(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_destroy - operations on mutexes SYNOPSIS
#include <pthread.h> pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr); int pthread_mutex_lock(pthread_mutex_t *mutex); int pthread_mutex_trylock(pthread_mutex_t *mutex); int pthread_mutex_unlock(pthread_mutex_t *mutex); int pthread_mutex_destroy(pthread_mutex_t *mutex); DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data structures from concurrent modifications, and implementing critical sections and monitors. A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex that is already locked by another thread is suspended until the own- ing thread unlocks the mutex first. pthread_mutex_init initializes the mutex object pointed to by mutex according to the mutex attributes specified in mutexattr. If mutexattr is NULL, default attributes are used instead. The LinuxThreads implementation supports only one mutex attributes, the mutex kind, which is either ``fast'', ``recursive'', or ``error checking''. The kind of a mutex determines whether it can be locked again by a thread that already owns it. The default kind is ``fast''. See pthread_mutexattr_init(3) for more information on mutex attributes. Variables of type pthread_mutex_t can also be initialized statically, using the constants PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP (for recursive mutexes), and PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP (for error checking mutexes). pthread_mutex_lock locks the given mutex. If the mutex is currently unlocked, it becomes locked and owned by the calling thread, and pthread_mutex_lock returns immediately. If the mutex is already locked by another thread, pthread_mutex_lock suspends the calling thread until the mutex is unlocked. If the mutex is already locked by the calling thread, the behavior of pthread_mutex_lock depends on the kind of the mutex. If the mutex is of the ``fast'' kind, the calling thread is suspended until the mutex is unlocked, thus effectively causing the calling thread to deadlock. If the mutex is of the ``error checking'' kind, pthread_mutex_lock returns immediately with the error code EDEADLK. If the mutex is of the ``recursive'' kind, pthread_mutex_lock succeeds and returns immediately, recording the number of times the calling thread has locked the mutex. An equal number of pthread_mutex_unlock operations must be performed before the mutex returns to the unlocked state. pthread_mutex_trylock behaves identically to pthread_mutex_lock, except that it does not block the calling thread if the mutex is already locked by another thread (or by the calling thread in the case of a ``fast'' mutex). Instead, pthread_mutex_trylock returns immediately with the error code EBUSY. pthread_mutex_unlock unlocks the given mutex. The mutex is assumed to be locked and owned by the calling thread on entrance to pthread_mutex_unlock. If the mutex is of the ``fast'' kind, pthread_mutex_unlock always returns it to the unlocked state. If it is of the ``recursive'' kind, it decrements the locking count of the mutex (number of pthread_mutex_lock operations performed on it by the calling thread), and only when this count reaches zero is the mutex actually unlocked. On ``error checking'' and ``recursive'' mutexes, pthread_mutex_unlock actually checks at run-time that the mutex is locked on entrance, and that it was locked by the same thread that is now calling pthread_mutex_unlock. If these conditions are not met, an error code is returned and the mutex remains unchanged. ``Fast'' mutexes perform no such checks, thus allowing a locked mutex to be unlocked by a thread other than its owner. This is non-portable behavior and must not be relied upon. pthread_mutex_destroy destroys a mutex object, freeing the resources it might hold. The mutex must be unlocked on entrance. In the Linux- Threads implementation, no resources are associated with mutex objects, thus pthread_mutex_destroy actually does nothing except checking that the mutex is unlocked. CANCELLATION
None of the mutex functions is a cancellation point, not even pthread_mutex_lock, in spite of the fact that it can suspend a thread for arbitrary durations. This way, the status of mutexes at cancellation points is predictable, allowing cancellation handlers to unlock pre- cisely those mutexes that need to be unlocked before the thread stops executing. Consequently, threads using deferred cancellation should never hold a mutex for extended periods of time. ASYNC-SIGNAL SAFETY The mutex functions are not async-signal safe. What this means is that they should not be called from a signal handler. In particular, calling pthread_mutex_lock or pthread_mutex_unlock from a signal handler may deadlock the calling thread. RETURN VALUE
pthread_mutex_init always returns 0. The other mutex functions return 0 on success and a non-zero error code on error. ERRORS
The pthread_mutex_lock function returns the following error code on error: EINVAL the mutex has not been properly initialized. EDEADLK the mutex is already locked by the calling thread (``error checking'' mutexes only). The pthread_mutex_trylock function returns the following error codes on error: EBUSY the mutex could not be acquired because it was currently locked. EINVAL the mutex has not been properly initialized. The pthread_mutex_unlock function returns the following error code on error: EINVAL the mutex has not been properly initialized. EPERM the calling thread does not own the mutex (``error checking'' mutexes only). The pthread_mutex_destroy function returns the following error code on error: EBUSY the mutex is currently locked. AUTHOR
Xavier Leroy <Xavier.Leroy@inria.fr> SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_cancel(3). EXAMPLE
A shared global variable x can be protected by a mutex as follows: int x; pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER; All accesses and modifications to x should be bracketed by calls to pthread_mutex_lock and pthread_mutex_unlock as follows: pthread_mutex_lock(&mut); /* operate on x */ pthread_mutex_unlock(&mut); LinuxThreads PTHREAD_MUTEX(3)
All times are GMT -4. The time now is 07:28 PM.
Unix & Linux Forums Content Copyright 1993-2022. All Rights Reserved.
Privacy Policy