Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

fifo(7) [suse man page]

FIFO(7) 						     Linux Programmer's Manual							   FIFO(7)

NAME
fifo - first-in first-out special file, named pipe DESCRIPTION
A FIFO special file (a named pipe) is similar to a pipe, except that it is accessed as part of the file system. It can be opened by multi- ple processes for reading or writing. When processes are exchanging data via the FIFO, the kernel passes all data internally without writ- ing it to the file system. Thus, the FIFO special file has no contents on the file system; the file system entry merely serves as a refer- ence point so that processes can access the pipe using a name in the file system. The kernel maintains exactly one pipe object for each FIFO special file that is opened by at least one process. The FIFO must be opened on both ends (reading and writing) before data can be passed. Normally, opening the FIFO blocks until the other end is opened also. A process can open a FIFO in nonblocking mode. In this case, opening for read only will succeed even if no-one has opened on the write side yet, opening for write only will fail with ENXIO (no such device or address) unless the other end has already been opened. Under Linux, opening a FIFO for read and write will succeed both in blocking and nonblocking mode. POSIX leaves this behavior undefined. This can be used to open a FIFO for writing while there are no readers available. A process that uses both ends of the connection in order to communicate with itself should be very careful to avoid deadlocks. NOTES
When a process tries to write to a FIFO that is not opened for read on the other side, the process is sent a SIGPIPE signal. FIFO special files can be created by mkfifo(3), and are indicated by ls -l with the file type 'p'. SEE ALSO
mkfifo(1), open(2), pipe(2), sigaction(2), signal(2), socketpair(2), mkfifo(3), pipe(7) COLOPHON
This page is part of release 3.25 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2008-12-03 FIFO(7)

Check Out this Related Man Page

PIPE(7) 						     Linux Programmer's Manual							   PIPE(7)

NAME
pipe - overview of pipes and FIFOs DESCRIPTION
Pipes and FIFOs (also known as named pipes) provide a unidirectional interprocess communication channel. A pipe has a read end and a write end. Data written to the write end of a pipe can be read from the read end of the pipe. A pipe is created using pipe(2), which creates a new pipe and returns two file descriptors, one referring to the read end of the pipe, the other referring to the write end. Pipes can be used to create a communication channel between related processes; see pipe(2) for an exam- ple. A FIFO (short for First In First Out) has a name within the file system (created using mkfifo(3)), and is opened using open(2). Any process may open a FIFO, assuming the file permissions allow it. The read end is opened using the O_RDONLY flag; the write end is opened using the O_WRONLY flag. See fifo(7) for further details. Note: although FIFOs have a pathname in the file system, I/O on FIFOs does not involve operations on the underlying device (if there is one). I/O on pipes and FIFOs The only difference between pipes and FIFOs is the manner in which they are created and opened. Once these tasks have been accomplished, I/O on pipes and FIFOs has exactly the same semantics. If a process attempts to read from an empty pipe, then read(2) will block until data is available. If a process attempts to write to a full pipe (see below), then write(2) blocks until sufficient data has been read from the pipe to allow the write to complete. Nonblocking I/O is possible by using the fcntl(2) F_SETFL operation to enable the O_NONBLOCK open file status flag. The communication channel provided by a pipe is a byte stream: there is no concept of message boundaries. If all file descriptors referring to the write end of a pipe have been closed, then an attempt to read(2) from the pipe will see end-of- file (read(2) will return 0). If all file descriptors referring to the read end of a pipe have been closed, then a write(2) will cause a SIGPIPE signal to be generated for the calling process. If the calling process is ignoring this signal, then write(2) fails with the error EPIPE. An application that uses pipe(2) and fork(2) should use suitable close(2) calls to close unnecessary duplicate file descriptors; this ensures that end-of-file and SIGPIPE/EPIPE are delivered when appropriate. It is not possible to apply lseek(2) to a pipe. Pipe capacity A pipe has a limited capacity. If the pipe is full, then a write(2) will block or fail, depending on whether the O_NONBLOCK flag is set (see below). Different implementations have different limits for the pipe capacity. Applications should not rely on a particular capac- ity: an application should be designed so that a reading process consumes data as soon as it is available, so that a writing process does not remain blocked. In Linux versions before 2.6.11, the capacity of a pipe was the same as the system page size (e.g., 4096 bytes on i386). Since Linux 2.6.11, the pipe capacity is 65536 bytes. PIPE_BUF POSIX.1-2001 says that write(2)s of less than PIPE_BUF bytes must be atomic: the output data is written to the pipe as a contiguous sequence. Writes of more than PIPE_BUF bytes may be nonatomic: the kernel may interleave the data with data written by other processes. POSIX.1-2001 requires PIPE_BUF to be at least 512 bytes. (On Linux, PIPE_BUF is 4096 bytes.) The precise semantics depend on whether the file descriptor is nonblocking (O_NONBLOCK), whether there are multiple writers to the pipe, and on n, the number of bytes to be written: O_NONBLOCK disabled, n <= PIPE_BUF All n bytes are written atomically; write(2) may block if there is not room for n bytes to be written immediately O_NONBLOCK enabled, n <= PIPE_BUF If there is room to write n bytes to the pipe, then write(2) succeeds immediately, writing all n bytes; otherwise write(2) fails, with errno set to EAGAIN. O_NONBLOCK disabled, n > PIPE_BUF The write is nonatomic: the data given to write(2) may be interleaved with write(2)s by other process; the write(2) blocks until n bytes have been written. O_NONBLOCK enabled, n > PIPE_BUF If the pipe is full, then write(2) fails, with errno set to EAGAIN. Otherwise, from 1 to n bytes may be written (i.e., a "partial write" may occur; the caller should check the return value from write(2) to see how many bytes were actually written), and these bytes may be interleaved with writes by other processes. Open file status flags The only open file status flags that can be meaningfully applied to a pipe or FIFO are O_NONBLOCK and O_ASYNC. Setting the O_ASYNC flag for the read end of a pipe causes a signal (SIGIO by default) to be generated when new input becomes available on the pipe (see fcntl(2) for details). On Linux, O_ASYNC is supported for pipes and FIFOs only since kernel 2.6. Portability notes On some systems (but not Linux), pipes are bidirectional: data can be transmitted in both directions between the pipe ends. According to POSIX.1-2001, pipes only need to be unidirectional. Portable applications should avoid reliance on bidirectional pipe semantics. SEE ALSO
dup(2), fcntl(2), open(2), pipe(2), poll(2), select(2), socketpair(2), stat(2), mkfifo(3), epoll(7), fifo(7) COLOPHON
This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/. Linux 2005-12-08 PIPE(7)
Man Page