Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

diag(4rheolef) [opensolaris man page]

diag(4rheolef)                                                      rheolef-6.1                                                     diag(4rheolef)

NAME
diag - get diagonal part of a matrix DESCRIPTION
This function get the diagonal part of a matrix. csr<Float> a; dia<Float> d = diag(a); TODO
Build a csr matrix from a diagonal one or from a vector: dia<Float> d; csr<Float> a = diag(d); vec<Float> u; csr<Float> b = diag(u); IMPLEMENTATION
template<class T, class M> dia<T,M> diag (const csr<T,M>& a) rheolef-6.1 rheolef-6.1 diag(4rheolef)

Check Out this Related Man Page

solver_abtb(2rheolef)						    rheolef-6.1 					     solver_abtb(2rheolef)

NAME
solver_abtb -- direct or iterative solver iterface for mixed linear systems SYNOPSIS
solver_abtb stokes (a,b,mp); solver_abtb elasticity (a,b,c,mp); DESCRIPTION
The solver_abtb class provides direct or iterative algorithms for some mixed problem: [ A B^T ] [ u ] [ Mf ] [ ] [ ] = [ ] [ B -C ] [ p ] [ Mg ] where A is symmetric positive definite and C is symmetric positive. By default, iterative algorithms are considered for tridimensional problems and direct methods otherwise. Such mixed linear problems appears for instance with the discretization of Stokes problems. The C matrix can be zero and then the corresponding argument can be omitted when invoking the constructor. Non-zero C matrix appears for of Stokes problems with stabilized P1-P1 element, or for nearly incompressible elasticity problems. DIRECT ALGORITHM
When the kernel of B^T is not reduced to zero, then the pressure p is defined up to a constant and the system is singular. In the case of iterative methods, this is not a problem. But when using direct method, the system is then completed to impose a constraint on the pres- sure term and the whole matrix is factored one time for all. ITERATIVE ALGORITHM
The preconditionned conjugate gradient algorithm is used, where the mp matrix is used as preconditionner. See see mixed_solver(4). EXAMPLES
See the user's manual for practical examples for the nearly incompressible elasticity, the Stokes and the Navier-Stokes problems. IMPLEMENTATION
template <class T, class M = rheo_default_memory_model> class solver_abtb_basic { public: // typedefs: typedef typename csr<T,M>::size_type size_type; // allocators: solver_abtb_basic (); solver_abtb_basic (const csr<T,M>& a, const csr<T,M>& b, const csr<T,M>& mp, const solver_option_type& opt = solver_option_type()); solver_abtb_basic (const csr<T,M>& a, const csr<T,M>& b, const csr<T,M>& c, const csr<T,M>& mp, const solver_option_type& opt = solver_option_type()); // accessors: void solve (const vec<T,M>& f, const vec<T,M>& g, vec<T,M>& u, vec<T,M>& p) const; protected: // internal void init(); // data: mutable solver_option_type _opt; csr<T,M> _a; csr<T,M> _b; csr<T,M> _c; csr<T,M> _mp; solver_basic<T,M> _sA; solver_basic<T,M> _sa; solver_basic<T,M> _smp; bool _need_constraint; }; typedef solver_abtb_basic<Float,rheo_default_memory_model> solver_abtb; SEE ALSO
mixed_solver(4) rheolef-6.1 rheolef-6.1 solver_abtb(2rheolef)
Man Page