Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

snmpm(3erl) [linux man page]

snmpm(3erl)						     Erlang Module Definition						       snmpm(3erl)

NAME
snmpm - Interface functions to the SNMP toolkit manager DESCRIPTION
The module snmpm contains interface functions to the SNMP manager. COMMON DATA TYPES
The following data types are used in the functions below: oid() = [byte()] - The oid() type is used to represent an ASN.1 OBJECT IDENTIFIER snmp_reply() = {error_status(), error_index(), varbinds()} error_status() = noError | atom() error_index() = integer() varbinds() = [varbind()] atl_type() = read | write | read_write target_name() = string() - Is a unique *non-empty* string vars_and_vals() = [var_and_val()] var_and_val() = {oid(), value_type(), value()} | {oid(), value()} value_type() = o ('OBJECT IDENTIFIER') | i ('INTEGER') | u ('Unsigned32') | g ('Unsigned32') | s ('OCTET SRING') | b ('BITS') | ip ('IpAddress') | op ('Opaque') | c32 ('Counter32') | c64 ('Counter64') | tt ('TimeTicks') value() = term() EXPORTS
monitor() -> Ref Types Ref = reference() Monitor the SNMP manager. In case of a crash, the calling (monitoring) process will get a 'DOWN' message (see the erlang module for more info). demonitor(Ref) -> void() Types Ref = reference() Turn off monitoring of the SNMP manager. notify_started(Timeout) -> Pid Types Timeout = integer() Pid = pid() Request a notification (message) when the SNMP manager has started. The Timeout is the time the request is valid. The value has to be greater then zero. The Pid is the process handling the supervision of the SNMP manager start. When the manager has started a completion message will be sent to the client from this process: {snmpm_started, Pid} . If the SNMP manager was not started in time, a timeout message will be sent to the client: {snmpm_start_timeout, Pid} . A client application that is dependent on the SNMP manager will use this function in order to be notified of when the manager has started. There are two situations when this is useful: * During the start of a system, when a client application could start prior to the SNMP manager but is dependent upon it, and therefor has to wait for it to start. * When the SNMP manager has crashed, the dependent client application has to wait for the SNMP manager to be restarted before it can reconnect . The function returns the pid() of a handler process, that does the supervision on behalf of the client application. Note that the client application is linked to this handler. This function is used in conjunction with the monitor function. cancel_notify_started(Pid) -> void() Types Pid = pid() Cancel a previous request to be notified of SNMP manager start. register_user(Id, Module, Data) -> ok | {error, Reason} register_user(Id, Module, Data, DefaultAgentConfig) -> ok | {error, Reason} Types Id = term() Module = snmpm_user() Data = term() DefaultAgentConfig = [default_agent_config()] default_agent_config() = {Item, Val} Item = community | timeout | max_message_size | version | sec_model | sec_name | sec_level Val = term() Reason = term() snmpm_user() = Module implementing the snmpm_user behaviour Register the manager entity (=user) responsible for specific agent(s). Module is the callback module (snmpm_user behaviour) which will be called whenever something happens (detected agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence of the node config. (see users.conf). The argument DefaultAgentConfig is used as default values when this user register agents. The type of Val depends on Item : community = string() timeout = integer() | snmp_timer() max_message_size = integer() version = v1 | v2 | v3 sec_model = any | v1 | v2c | usm sec_name = string() sec_level = noAuthNoPriv | authNoPriv | authPriv register_user_monitor(Id, Module, Data) -> ok | {error, Reason} register_user_monitor(Id, Module, Data, DefaultAgentConfig) -> ok | {error, Reason} Types Id = term() Module = snmpm_user() DefaultAgentConfig = [default_agent_config()] default_agent_config() = {Item, Val} Item = community | timeout | max_message_size | version | sec_model | sec_name | sec_level Val = term() Data = term() Reason = term() snmpm_user() = Module implementing the snmpm_user behaviour Register the monitored manager entity (=user) responsible for specific agent(s). The process performing the registration will be monitored. Which means that if that process should die, all agents registered by that user process will be unregistered. All outstanding requests will be canceled. Module is the callback module (snmpm_user behaviour) which will be called whenever something happens (detected agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence of the node config. (see users.conf). The argument DefaultAgentConfig is used as default values when this user register agents. The type of Val depends on Item : community = string() timeout = integer() | snmp_timer() max_message_size = integer() version = v1 | v2 | v3 sec_model = any | v1 | v2c | usm sec_name = string() sec_level = noAuthNoPriv | authNoPriv | authPriv unregister_user(Id) -> ok | {error, Reason} Types Id = term() Unregister the user. which_users() -> Users Types Users = [UserId] UserId = term() Get a list of the identities of all registered users. register_agent(UserId, TargetName, Config) -> ok | {error, Reason} Types UserId = term() Addr = ip_address() TargetName = target_name() Config = [agent_config()] agent_config() = {Item, Val} Item = engine_id | address | port | community | timeout | max_message_size | version | sec_model | sec_name | sec_level Val = term() Reason = term() Explicitly instruct the manager to handle this agent, with UserId as the responsible user. Called to instruct the manager that this agent shall be handled. This function is used when the user knows in advance which agents the manager shall handle. Note that there is an alternate way to do the same thing: Add the agent to the manager config files (see agents.conf ). TargetName is a non-empty string, uniquely identifying the agent. The type of Val depends on Item : [mandatory] engine_id = string() [mandatory] address = ip_address() [optional] port = integer() [optional] community = string() [optional] timeout = integer() | snmp_timer() [optional] max_message_size = integer() [optional] version = v1 | v2 | v3 [optional] sec_model = any | v1 | v2c | usm [optional] sec_name = string() [optional] sec_level = noAuthNoPriv | authNoPriv | authPriv Note that if no Port is given, the default value is used. unregister_agent(UserId, TargetName) -> ok | {error, Reason} Types UserId = term() TargetName = target_name() Unregister the agent. agent_info(TargetName, Item) -> {ok, Val} | {error, Reason} Types TargetName = target_name() Item = atom() Reason = term() Retrieve agent config. update_agent_info(UserId, TargetName, Item, Val) -> ok | {error, Reason} Types UserId = term() TargetName = target_name() Item = atom() Val = term() Reason = term() Update agent config. which_agents() -> Agents which_agents(UserId) -> Agents Types UserId = term() Agents = [TargetName] TargetName = target_name() Get a list of all registered agents or all agents registered by a specific user. register_usm_user(EngineID, UserName, Conf) -> ok | {error, Reason} Types EngineID = string() UserName = string() Conf = [usm_config()] usm_config() = {Item, Val} Item = sec_name | auth | auth_key | priv | priv_key Val = term() Reason = term() Explicitly instruct the manager to handle this USM user. Note that there is an alternate way to do the same thing: Add the usm user to the manager config files (see usm.conf ). The type of Val depends on Item : sec_name = string() auth = usmNoAuthProtocol | usmHMACMD5AuthProtocol | usmHMACSHAAuthProtocoltimeout auth_key = [integer()] (length 16 if auth = usmHMACMD5AuthProtocol, length 20 if auth = usmHMACSHAAuthProtocol) priv = usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfb128Protocol priv_key = [integer()] (length is 16 if priv = usmDESPrivProtocol | usmAesCfb128Protocol). unregister_usm_user(EngineID, UserName) -> ok | {error, Reason} Types EngineID = string() UserName = string() Reason = term() Unregister this USM user. usm_user_info(EngineID, UserName, Item) -> {ok, Val} | {error, Reason} Types EngineID = string() UsmName = string() Item = sec_name | auth | auth_key | priv | priv_key Reason = term() Retrieve usm user config. update_usm_user_info(EngineID, UserName, Item, Val) -> ok | {error, Reason} Types EngineID = string() UsmName = string() Item = sec_name | auth | auth_key | priv | priv_key Val = term() Reason = term() Update usm user config. which_usm_users() -> UsmUsers Types UsmUsers = [{EngineID,UserName}] EngineID = string() UsmName = string() Get a list of all registered usm users. which_usm_users(EngineID) -> UsmUsers Types UsmUsers = [UserName] UserName = string() Get a list of all registered usm users with engine-id EngineID . sync_get(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get(UserId, TargetName, ContextName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get(UserId, TargetName, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get(UserId, TargetName, ContextName, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get(UserId, TargetName, ContextName, Oids, Timeout, ExtraInfo) -> {ok, SnmpReply, Remaining} | {error, Reason} Types UserId = term() TargetName = target_name() ContextName = string() Oids = [oid()] Timeout = integer() ExtraInfo = term() SnmpReply = snmp_reply() Remaining = integer() Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} | term() R = term() SecInfo = [sec_info()] sec_info() = {sec_tag(), ExpectedValue, ReceivedValue} sec_tag() = atom() ExpectedValue = ReceivedValue = term() SnmpInfo = term() Synchronous get-request . Remaining is the remaining time of the given or default timeout time. When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because of any num- ber of reasons, i.e. encoding error. R is the actual reason in this case. ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. For SnmpInfo , see the user callback function handle_report . async_get(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason} async_get(UserId, TargetName, ContextName, Oids) -> {ok, ReqId} | {error, Reason} async_get(UserId, TargetName, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get(UserId, TargetName, ContextName, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get(UserId, TargetName, ContextName, Oids, Expire, ExtraInfo) -> {ok, ReqId} | {error, Reason} Types UserId = term() TargetName = target_name() ContextName = string() Oids = [oid()] Expire = integer() ExtraInfo = term() ReqId = term() Reason = term() Asynchronous get-request . The reply, if it arrives, will be delivered to the user through a call to the snmpm_user callback function handle_pdu . The Expire time indicates for how long the request is valid (after which the manager is free to delete it). ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. sync_get_next(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_next(UserId, TargetName, ContextName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_next(UserId, TargetName, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_next(UserId, TargetName, ContextName, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_next(UserId, TargetName, ContextName, Oids, Timeout, ExtraInfo) -> {ok, SnmpReply, Remaining} | {error, Reason} Types UserId = term() TargetName = target_name() ContextName = string() Oids = [oid()] Timeout = integer() ExtraInfo = term() SnmpReply = snmp_reply() Remaining = integer() Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} | term() R = term() Synchronous get-next-request . Remaining time of the given or default timeout time. When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because of any num- ber of reasons, i.e. encoding error. R is the actual reason in this case. ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. async_get_next(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason} async_get_next(UserId, TargetName, ContextName, Oids) -> {ok, ReqId} | {error, Reason} async_get_next(UserId, TargetName, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get_next(UserId, TargetName, ContextName, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get_next(UserId, TargetName, ContextName, Oids, Expire, ExtraInfo) -> {ok, ReqId} | {error, Reason} Types UserId = term() TargetName = target_name() ContextName = string() Oids = [oid()] Expire = integer() ExtraInfo = term() ReqId = integer() Reason = term() Asynchronous get-next-request . The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu . The Expire time indicates for how long the request is valid (after which the manager is free to delete it). sync_set(UserId, TargetName, VarsAndVals) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_set(UserId, TargetName, ContextName, VarsAndVals) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_set(UserId, TargetName, VarsAndVals, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_set(UserId, TargetName, ContextName, VarsAndVals, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_set(UserId, TargetName, ContextName, VarsAndVals, Timeout, ExtraInfo) -> {ok, SnmpReply, Remaining} | {error, Reason} Types UserId = term() TargetName = target_name() ContextName = string() VarsAndVals = vars_and_vals() Timeout = integer() ExtraInfo = term() SnmpReply = snmp_reply() Remaining = integer() Reason = {send_failed, ReqId, ActualReason} | {invalid_sec_info, SecInfo, SnmpInfo} | term() ActualReason = term() Synchronous set-request . Remaining time of the given or default timeout time. When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because of any num- ber of reasons, i.e. encoding error. R is the actual reason in this case. When var_and_val() is {oid(), value()} , the manager makes an educated guess based on the loaded mibs. ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. async_set(UserId, TargetName, VarsAndVals) -> {ok, ReqId} | {error, Reason} async_set(UserId, TargetName, ContextName, VarsAndVals) -> {ok, ReqId} | {error, Reason} async_set(UserId, TargetName, VarsAndVals, Expire) -> {ok, ReqId} | {error, Reason} async_set(UserId, TargetName, ContextName, VarsAndVals, Expire) -> {ok, ReqId} | {error, Reason} async_set(UserId, TargetName, ContextName, VarsAndVals, Expire, ExtraInfo) -> {ok, ReqId} | {error, Reason} Types UserId = term() TargetName = target_name() VarsAndVals = vars_and_vals() Expire = integer() ExtraInfo = term() ReqId = term() Reason = term() Asynchronous set-request . The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu . The Expire time indicates for how long the request is valid (after which the manager is free to delete it). When var_and_val() is {oid(), value()} , the manager makes an educated guess based on the loaded mibs. ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. sync_get_bulk(UserId, TragetName, NonRep, MaxRep, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_bulk(UserId, TragetName, NonRep, MaxRep, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids, Timeout) -> {ok, SnmpReply, Remaining} | {error, Reason} sync_get_bulk(UserId, TragetName, NonRep, MaxRep, ContextName, Oids, Timeout, ExtraInfo) -> {ok, SnmpReply, Remaining} | {error, Reason} Types UserId = term() TargetName = target_name() NonRep = integer() MaxRep = integer() ContextName = string() Oids = [oid()] Timeout = integer() ExtraInfo = term() SnmpReply = snmp_reply() Remaining = integer() Reason = {send_failed, ReqId, R} | {invalid_sec_info, SecInfo, SnmpInfo} | term() Synchronous get-bulk-request (See RFC1905). Remaining time of the given or default timeout time. When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen because of any num- ber of reasons, i.e. encoding error. R is the actual reason in this case. ExtraInfo is an opaque data structure passed on to the net-if process. The net-if process included in this application makes no use of this info, so the only use for it in such a configuration (when using the built in net-if) would be tracing. async_get_bulk(UserId, TargetName, NonRep, MaxRep, Oids) -> {ok, ReqId} | {error, Reason} async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids) -> {ok, ReqId} | {error, Reason} async_get_bulk(UserId, TargetName, NonRep, MaxRep, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids, Expire) -> {ok, ReqId} | {error, Reason} async_get_bulk(UserId, TargetName, NonRep, MaxRep, ContextName, Oids, Expire, ExtraInfo) -> {ok, ReqId} | {error, Reason} Types UserId = term() TargetName = target_name() NonRep = integer() MaxRep = integer() ContextName = string() Oids = [oid()] Expire = integer() ExtraInfo = term() ReqId = integer() Reason = term() Asynchronous get-bulk-request (See RFC1905). The reply will be delivered to the user through a call to the snmpm_user callback function handle_pdu . The Expire time indicates for how long the request is valid (after which the manager is free to delete it). cancel_async_request(UserId, ReqId) -> ok | {error, Reason} Types UserId = term() ReqId = term() Reason = term() Cancel a previous asynchronous request. log_to_txt(LogDir, Mibs) log_to_txt(LogDir, Mibs, OutFile) -> ok | {error, Reason} log_to_txt(LogDir, Mibs, OutFile, LogName) -> ok | {error, Reason} log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {error, Reason} log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {error, Reason} log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok | {error, Reason} Types LogDir = string() Mibs = [MibName] MibName = string() OutFile = string() LogName = string() LogFile = string() Start = Stop = null | datetime() | {local_time,datetime()} | {universal_time,datetime()} Reason = disk_log_open_error() | file_open_error() | term() disk_log_open_error() = {LogName, term()} file_open_error() = {OutFile, term()} Converts an Audit Trail Log to a readable text file. OutFile defaults to "./snmpm_log.txt". LogName defaults to "snmpm_log". LogFile defaults to "snmpm.log". See snmp:log_to_txt for more info. change_log_size(NewSize) -> ok | {error, Reason} Types NewSize = {MaxBytes, MaxFiles} MaxBytes = integer() MaxFiles = integer() Reason = term() Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function. Please refer to disk_log(3erl) in Kernel Reference Manual for a description of how to change the log size. The change is permanent, as long as the log is not deleted. That means, the log size is remembered across reboots. set_log_type(NewType) -> {ok, OldType} | {error, Reason} Types NewType = OldType = atl_type() Reason = term() Changes the run-time Audit Trail log type. Note that this has no effect on the application configuration as defined by configuration files, so a node restart will revert the config to whatever is in those files. This function is primarily useful in testing/debugging scenarios. load_mib(Mib) -> ok | {error, Reason} Types Mib = MibName MibName = string() Reason = term() Load a Mib into the manager. The MibName is the name of the Mib, including the path to where the compiled mib is found. For example, Dir = code:priv_dir(my_app) ++ "/mibs/", snmpm:load_mib(Dir ++ "MY-MIB"). unload_mib(Mib) -> ok | {error, Reason} Types Mib = MibName MibName = string() Reason = term() Unload a Mib from the manager. The MibName is the name of the Mib, including the path to where the compiled mib is found. For exam- ple, Dir = code:priv_dir(my_app) ++ "/mibs/", snmpm:unload_mib(Dir ++ "MY-MIB"). which_mibs() -> Mibs Types Mibs = [{MibName, MibFile}] MibName = atom() MibFile = string() Get a list of all the mib's loaded into the manager. name_to_oid(Name) -> {ok, Oids} | {error, Reason} Types Name = atom() Oids = [oid()] Transform a alias-name to its oid. Note that an alias-name is only unique within the mib, so when loading several mib's into a manager, there might be several instances of the same aliasname. oid_to_name(Oid) -> {ok, Name} | {error, Reason} Types Oid = oid() Name = atom() Reason = term() Transform a oid to its aliasname. oid_to_type(Oid) -> {ok, Type} | {error, Reason} Types Oid = oid() Type = atom() Reason = term() Retreive the type (asn1 bertype) of an oid. backup(BackupDir) -> ok | {error, Reason} Types BackupDir = string() Backup persistent data handled by the manager. BackupDir cannot be identical to DbDir. info() -> [{Key, Value}] Types Key = atom() Value = term() Returns a list (a dictionary) containing information about the manager. Information includes statistics counters, miscellaneous info about each process (e.g. memory allocation), and so on. verbosity(Ref, Verbosity) -> void() Types Ref = server | config | net_if | note_store | all Verbosity = verbosity() verbosity() = silence | info | log | debug | trace Sets verbosity for the designated process. For the lowest verbosity silence , nothing is printed. The higher the verbosity, the more is printed. format_reason(Reason) -> string() format_reason(Prefix, Reason) -> string() Types Reason = term() Prefix = integer() | string() This utility function is used to create a formatted (pretty printable) string of the error reason received from either: * The Reason returned value if any of the sync/async get/get-next/set/get-bulk functions returns {error, Reason} * The Reason parameter in the handle_error user callback function. Prefix should either be an indention string (e.g. a list of spaces) or a positive integer (which will be used to create the inden- tion string of that length). Ericsson AB snmp 4.19 snmpm(3erl)
Man Page