Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

basis(7rheolef) [debian man page]

basis(7rheolef) 						    rheolef-6.1 						   basis(7rheolef)

NAME
basis - polynomial basis SYNOPSYS
The basis class defines functions that evaluates a polynomial basis and its derivatives on a point. The polynomial basis is designated by a string, e.g. "P0", "P1", "P2", "bubble",... indicating the basis. The basis depends also of the reference element: triangle, square, tetrahedron (see reference_element(2)). For instance, on a square, the "P1" string designates the common Q1 four-nodes basis on the refer- ence square. The nodes associated to the Lagrange polynomial basis are also available by its associated accessor. IMPLEMENTATION NOTE
The basis class is a see smart_pointer(2)) class on a basis_rep class that is a pure virtual base class for effective bases, e.g. basis_P1, basis_P1, etc. IMPLEMENTATION
template<class T> class basis_basic : public smart_pointer<basis_rep<T> > { public: // typedefs: typedef basis_rep<T> rep; typedef smart_pointer<rep> base; typedef typename basis_rep<T>::size_type size_type; // allocators: basis_basic (std::string name = ""); // accessors: std::string name() const; size_type degree() const; size_type size (reference_element hat_K) const; void hat_node( reference_element hat_K, std::vector<point_basic<T> >& hat_node) const; void eval( reference_element hat_K, const point_basic<T>& hat_x, std::vector<T>& values) const; void grad_eval( reference_element hat_K, const point_basic<T>& hat_x, std::vector<point_basic<T> >& values) const; }; typedef basis_basic<Float> basis; SEE ALSO
reference_element(2), smart_pointer(2) rheolef-6.1 rheolef-6.1 basis(7rheolef)

Check Out this Related Man Page

space(2rheolef) 						    rheolef-6.1 						   space(2rheolef)

NAME
space -- piecewise polynomial finite element space DESCRIPTION
The space class contains some numbering for unknowns and blocked degrees of freedoms related to a given mesh and polynomial approximation. SYNOPSIS
space Q (omega, "P1"); space V (omega, "P2", "vector"); space T (omega, "P1d", "tensor"); PRODUCT
space X = T*V*Q; space Q2 = pow(Q,2); IMPLEMENTATION
template <class T> class space_basic<T,sequential> : public smart_pointer<space_rep<T,sequential> > { public: // typedefs: typedef space_rep<T,sequential> rep; typedef smart_pointer<rep> base; typedef typename rep::size_type size_type; typedef typename rep::valued_type valued_type; // allocators: space_basic (const geo_basic<T,sequential>& omega = (geo_basic<T,sequential>()), std::string approx = "", std::string valued = "scalar"); space_basic (const space_mult_list<T,sequential>& expr); space_basic (const space_constitution<T,sequential>& constit); // accessors: void block (std::string dom_name); void unblock(std::string dom_name); void block (const domain_indirect_basic<sequential>& dom); void unblock(const domain_indirect_basic<sequential>& dom); const distributor& ownership() const; const communicator& comm() const; size_type ndof() const; size_type dis_ndof() const; const geo_basic<T,sequential>& get_geo() const; const numbering<T,sequential>& get_numbering() const; size_type size() const; valued_type valued_tag() const; const std::string& valued() const; space_component<T,sequential> operator[] (size_type i_comp); space_component_const<T,sequential> operator[] (size_type i_comp) const; const space_constitution<T,sequential>& get_constitution() const; size_type degree() const; std::string get_approx() const; std::string stamp() const; void dis_idof (const geo_element& K, std::vector<size_type>& dis_idof) const; const distributor& iu_ownership() const; const distributor& ib_ownership() const; bool is_blocked (size_type idof) const; size_type iub (size_type idof) const; bool dis_is_blocked (size_type dis_idof) const; size_type dis_iub (size_type dis_idof) const; const distributor& ios_ownership() const; size_type idof2ios_dis_idof (size_type idof) const; size_type ios_idof2dis_idof (size_type ios_idof) const; const point_basic<T>& xdof (size_type idof) const; const array<point_basic<T>,sequential>& get_xdofs() const; template <class Function> T momentum (Function f, size_type idof) const; template <class Function> point_basic<T> vector_momentum (Function f, size_type idof) const; array<size_type, sequential> build_indirect_array ( const space_basic<T,sequential>& Wh, const std::string& dom_name) const; array<size_type, sequential> build_indirect_array ( const space_basic<T,sequential>& Wh, const geo_basic<T,sequential>& bgd_gamma) const; const std::set<size_type>& ext_iu_set() const { return base::data().ext_iu_set(); } const std::set<size_type>& ext_ib_set() const { return base::data().ext_ib_set(); } // comparator: bool operator== (const space_basic<T,sequential>& V2) const { return base::data().operator==(V2.data()); } bool operator!= (const space_basic<T,sequential>& V2) const { return ! operator== (V2); } friend bool are_compatible (const space_basic<T,sequential>& V1, const space_basic<T,sequential>& V2) { return are_compatible (V1.data(), V2.data()); } }; IMPLEMENTATION
template <class T> class space_basic<T,distributed> : public smart_pointer<space_rep<T,distributed> > { public: // typedefs: typedef space_rep<T,distributed> rep; typedef smart_pointer<rep> base; typedef typename rep::size_type size_type; typedef typename rep::valued_type valued_type; // allocators: space_basic (const geo_basic<T,distributed>& omega = (geo_basic<T,distributed>()), std::string approx = "", std::string valued = "scalar"); space_basic (const space_mult_list<T,distributed>&); space_basic (const space_constitution<T,distributed>& constit); // accessors: void block (std::string dom_name); void unblock(std::string dom_name); void block (const domain_indirect_basic<distributed>& dom); void unblock(const domain_indirect_basic<distributed>& dom); const distributor& ownership() const; const communicator& comm() const; size_type ndof() const; size_type dis_ndof() const; const geo_basic<T,distributed>& get_geo() const; const numbering<T,distributed>& get_numbering() const; size_type size() const; valued_type valued_tag() const; const std::string& valued() const; space_component<T,distributed> operator[] (size_type i_comp); space_component_const<T,distributed> operator[] (size_type i_comp) const; const space_constitution<T,distributed>& get_constitution() const; size_type degree() const; std::string get_approx() const; std::string stamp() const; void dis_idof (const geo_element& K, std::vector<size_type>& dis_idof) const; const distributor& iu_ownership() const; const distributor& ib_ownership() const; bool is_blocked (size_type idof) const; size_type iub (size_type idof) const; bool dis_is_blocked (size_type dis_idof) const; size_type dis_iub (size_type dis_idof) const; const distributor& ios_ownership() const; size_type idof2ios_dis_idof (size_type idof) const; size_type ios_idof2dis_idof (size_type ios_idof) const; const point_basic<T>& xdof (size_type idof) const; const array<point_basic<T>,distributed>& get_xdofs() const; template <class Function> T momentum (Function f, size_type idof) const; template <class Function> point_basic<T> vector_momentum (Function f, size_type idof) const; array<size_type, distributed> build_indirect_array ( const space_basic<T,distributed>& Wh, const std::string& dom_name) const; array<size_type, distributed> build_indirect_array ( const space_basic<T,distributed>& Wh, const geo_basic<T,distributed>& bgd_gamma) const; const std::set<size_type>& ext_iu_set() const { return base::data().ext_iu_set(); } const std::set<size_type>& ext_ib_set() const { return base::data().ext_ib_set(); } // comparator: bool operator== (const space_basic<T,distributed>& V2) const { return base::data().operator==(V2.data()); } bool operator!= (const space_basic<T,distributed>& V2) const { return ! operator== (V2); } friend bool are_compatible (const space_basic<T,distributed>& V1, const space_basic<T,distributed>& V2) { return are_compatible (V1.data(), V2.data()); } }; rheolef-6.1 rheolef-6.1 space(2rheolef)
Man Page