Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

slasy2.f(3) [debian man page]

slasy2.f(3)							      LAPACK							       slasy2.f(3)

NAME
slasy2.f - SYNOPSIS
Functions/Subroutines subroutine slasy2 (LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO) SLASY2 Function/Subroutine Documentation subroutine slasy2 (logicalLTRANL, logicalLTRANR, integerISGN, integerN1, integerN2, real, dimension( ldtl, * )TL, integerLDTL, real, dimension( ldtr, * )TR, integerLDTR, real, dimension( ldb, * )B, integerLDB, realSCALE, real, dimension( ldx, * )X, integerLDX, realXNORM, integerINFO) SLASY2 Purpose: SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in op(TL)*X + ISGN*X*op(TR) = SCALE*B, where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or -1. op(T) = T or T**T, where T**T denotes the transpose of T. Parameters: LTRANL LTRANL is LOGICAL On entry, LTRANL specifies the op(TL): = .FALSE., op(TL) = TL, = .TRUE., op(TL) = TL**T. LTRANR LTRANR is LOGICAL On entry, LTRANR specifies the op(TR): = .FALSE., op(TR) = TR, = .TRUE., op(TR) = TR**T. ISGN ISGN is INTEGER On entry, ISGN specifies the sign of the equation as described before. ISGN may only be 1 or -1. N1 N1 is INTEGER On entry, N1 specifies the order of matrix TL. N1 may only be 0, 1 or 2. N2 N2 is INTEGER On entry, N2 specifies the order of matrix TR. N2 may only be 0, 1 or 2. TL TL is REAL array, dimension (LDTL,2) On entry, TL contains an N1 by N1 matrix. LDTL LDTL is INTEGER The leading dimension of the matrix TL. LDTL >= max(1,N1). TR TR is REAL array, dimension (LDTR,2) On entry, TR contains an N2 by N2 matrix. LDTR LDTR is INTEGER The leading dimension of the matrix TR. LDTR >= max(1,N2). B B is REAL array, dimension (LDB,2) On entry, the N1 by N2 matrix B contains the right-hand side of the equation. LDB LDB is INTEGER The leading dimension of the matrix B. LDB >= max(1,N1). SCALE SCALE is REAL On exit, SCALE contains the scale factor. SCALE is chosen less than or equal to 1 to prevent the solution overflowing. X X is REAL array, dimension (LDX,2) On exit, X contains the N1 by N2 solution. LDX LDX is INTEGER The leading dimension of the matrix X. LDX >= max(1,N1). XNORM XNORM is REAL On exit, XNORM is the infinity-norm of the solution. INFO INFO is INTEGER On exit, INFO is set to 0: successful exit. 1: TL and TR have too close eigenvalues, so TL or TR is perturbed to get a nonsingular equation. NOTE: In the interests of speed, this routine does not check the inputs for errors. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 174 of file slasy2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slasy2.f(3)

Check Out this Related Man Page

SLASY2(l)								 )								 SLASY2(l)

NAME
SLASY2 - solve for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in op(TL)*X + ISGN*X*op(TR) = SCALE*B, SYNOPSIS
SUBROUTINE SLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) LOGICAL LTRANL, LTRANR INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 REAL SCALE, XNORM REAL B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), X( LDX, * ) PURPOSE
SLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in op(TL)*X + ISGN*X*op(TR) = SCALE*B, where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or -1. op(T) = T or T', where T' denotes the transpose of T. ARGUMENTS
LTRANL (input) LOGICAL On entry, LTRANL specifies the op(TL): = .FALSE., op(TL) = TL, = .TRUE., op(TL) = TL'. LTRANR (input) LOGICAL On entry, LTRANR specifies the op(TR): = .FALSE., op(TR) = TR, = .TRUE., op(TR) = TR'. ISGN (input) INTEGER On entry, ISGN specifies the sign of the equation as described before. ISGN may only be 1 or -1. N1 (input) INTEGER On entry, N1 specifies the order of matrix TL. N1 may only be 0, 1 or 2. N2 (input) INTEGER On entry, N2 specifies the order of matrix TR. N2 may only be 0, 1 or 2. TL (input) REAL array, dimension (LDTL,2) On entry, TL contains an N1 by N1 matrix. LDTL (input) INTEGER The leading dimension of the matrix TL. LDTL >= max(1,N1). TR (input) REAL array, dimension (LDTR,2) On entry, TR contains an N2 by N2 matrix. LDTR (input) INTEGER The leading dimension of the matrix TR. LDTR >= max(1,N2). B (input) REAL array, dimension (LDB,2) On entry, the N1 by N2 matrix B contains the right-hand side of the equation. LDB (input) INTEGER The leading dimension of the matrix B. LDB >= max(1,N1). SCALE (output) REAL On exit, SCALE contains the scale factor. SCALE is chosen less than or equal to 1 to prevent the solution overflowing. X (output) REAL array, dimension (LDX,2) On exit, X contains the N1 by N2 solution. LDX (input) INTEGER The leading dimension of the matrix X. LDX >= max(1,N1). XNORM (output) REAL On exit, XNORM is the infinity-norm of the solution. INFO (output) INTEGER On exit, INFO is set to 0: successful exit. 1: TL and TR have too close eigenvalues, so TL or TR is perturbed to get a nonsingular equation. NOTE: In the interests of speed, this routine does not check the inputs for errors. LAPACK version 3.0 15 June 2000 SLASY2(l)
Man Page