Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

csptri.f(3) [debian man page]

csptri.f(3)							      LAPACK							       csptri.f(3)

NAME
csptri.f - SYNOPSIS
Functions/Subroutines subroutine csptri (UPLO, N, AP, IPIV, WORK, INFO) CSPTRI Function/Subroutine Documentation subroutine csptri (characterUPLO, integerN, complex, dimension( * )AP, integer, dimension( * )IPIV, complex, dimension( * )WORK, integerINFO) CSPTRI Purpose: CSPTRI computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSPTRF. WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 110 of file csptri.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 csptri.f(3)

Check Out this Related Man Page

CSPTRI(l)								 )								 CSPTRI(l)

NAME
CSPTRI - compute the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF SYNOPSIS
SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) CHARACTER UPLO INTEGER INFO, N INTEGER IPIV( * ) COMPLEX AP( * ), WORK( * ) PURPOSE
CSPTRI computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF. ARGUMENTS
UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSPTRF. WORK (workspace) COMPLEX array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. LAPACK version 3.0 15 June 2000 CSPTRI(l)
Man Page