Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

band(2rheolef) [debian man page]

band(2rheolef)							    rheolef-6.1 						    band(2rheolef)

NAME
band - compute the band arround a level set DESCRIPTION
Given a function fh defined in a domain Lambda, compute the band of elements intersecting the level set defined by {x in Lambda, fh(x) = 0}. This class is used for solving problems defined on a surface described by a level set function (See level_set(4)). ACCESSORS
Each side in the surface mesh, as returned by the level_set member function, is included into an element of the band mesh, as returned by the band member function. Moreover, in the distributed memory environment, this correspondance is on the same process, so local indexes can be used for this correspondance: this is the sid_ie2bnd_ie member functions. BAND TOPOLOGY AND DOMAINS
For the direct resolution of systems posed on the band, the mesh returned by the band() provides some domains of vertices. The "zero" ver- tex domain lists all vertices xi such that fh(xi)=0. The "isolated" vertex domain lists all vertices xi such that fh(xi)!=0 and xi is con- tained by only one element K and all vertices xj!=xi of K satifies fh(xj)=0. Others vertices of the band, separated by the zero and iso- lated ones, are organizd by connected components: the n_connex_component member function returns its number. Corresponding vertex domains of the band are named "cc<i>" where <i> should be replaced by any number between 0 and n_connex_component-1. IMPLEMENTATION
template <class T, class M = rheo_default_memory_model> class band_basic { public: typedef typename geo_basic<T,M>::size_type size_type; // allocators: band_basic(); band_basic(const field_basic<T,M>& fh, const level_set_option_type& opt = level_set_option_type()); /// accessors: const geo_basic<T,M>& band() const { return _band; } const geo_basic<T,M>& level_set() const { return _gamma; } size_type sid_ie2bnd_ie (size_type sid_ie) const { return _sid_ie2bnd_ie [sid_ie]; } size_type n_connected_component() const { return _ncc; } // data: protected: geo_basic<T,M> _gamma; geo_basic<T,M> _band; array<size_type,M> _sid_ie2bnd_ie; size_type _ncc; }; typedef band_basic<Float> band; SEE ALSO
level_set(4) rheolef-6.1 rheolef-6.1 band(2rheolef)

Check Out this Related Man Page

form(2rheolef)							    rheolef-6.1 						    form(2rheolef)

NAME
form - representation of a finite element bilinear form DESCRIPTION
The form class groups four sparse matrix, associated to a bilinear form on two finite element spaces: a: U*V ----> IR (u,v) |---> a(u,v) The operator A associated to the bilinear form is defined by: A: U ----> V' u |---> A(u) where u and v are fields (see field(2)), and A(u) is such that a(u,v)=<A(u),v> for all u in U and v in V and where <.,.> denotes the dual- ity product between V and V'. Since V is a finite dimensional spaces, the duality product is the euclidian product in IR^dim(V). Since both U and V are finite dimensional spaces, the linear operator can be represented by a matrix. The form class is represented by four sparse matrix in csr format (see csr(2)), associated to unknown and blocked degrees of freedom of origin and destination spaces (see space(2)). EXAMPLE
The operator A associated to a bilinear form a(.,.) by the relation (Au,v) = a(u,v) could be applied by using a sample matrix notation A*u, as shown by the following code: geo omega("square"); space V (omega,"P1"); form a (V,V,"grad_grad"); field uh = interpolate (fct, V); field vh = a*uh; cout << v; The form-field vh=a*uh operation is equivalent to the following matrix-vector operations: vh.set_u() = a.uu()*uh.u() + a.ub()*uh.b(); vh.set_b() = a.bu()*uh.u() + a.bb()*uh.b(); ALGABRA
Forms, as matrices (see csr(2)), support linear algebra: Adding or substracting two forms writes a+b and a-b, respectively, and multiplying a form by a field uh writes a*uh. Thus, any linear combination of forms is available. IMPLEMENTATION
template<class T, class M> class form_basic { public : // typedefs: typedef typename csr<T,M>::size_type size_type; typedef T value_type; typedef typename scalar_traits<T>::type float_type; typedef geo_basic<float_type,M> geo_type; typedef space_basic<float_type,M> space_type; // allocator/deallocator: form_basic (); form_basic (const form_basic<T,M>&); form_basic (const space_type& X, const space_type& Y, const std::string& name = "", quadrature_option_type qopt = quadrature_option_type(quadrature_option_type::max_family,0)); form_basic (const space_type& X, const space_type& Y, const std::string& name, const geo_basic<T,M>& gamma, quadrature_option_type qopt = quadrature_option_type(quadrature_option_type::max_family,0)); form_basic (const space_type& X, const space_type& Y, const std::string& name, const field_basic<T,M>& weight, quadrature_option_type qopt = quadrature_option_type(quadrature_option_type::max_family,0)); form_basic (const space_type& X, const space_type& Y, const std::string& name, const band_basic<T,M>& bh, quadrature_option_type qopt = quadrature_option_type(quadrature_option_type::max_family,0)); // allocators from initializer list (c++ 2011): #ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST form_basic (const std::initializer_list<form_concat_value<T,M> >& init_list); form_basic (const std::initializer_list<form_concat_line <T,M> >& init_list); #endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST // accessors: const space_type& get_first_space() const; const space_type& get_second_space() const; const geo_type& get_geo() const; const communicator& comm() const; // linear algebra: form_basic<T,M> operator+ (const form_basic<T,M>& b) const; form_basic<T,M> operator- (const form_basic<T,M>& b) const; form_basic<T,M>& operator*= (const T& lambda); field_basic<T,M> operator* (const field_basic<T,M>& xh) const; #ifdef TO_CLEAN template <class Expr> field_basic<T,M> operator* (const field_expr<Expr>& xh) const; #endif // TO_CLEAN field_basic<T,M> trans_mult (const field_basic<T,M>& yh) const; float_type operator () (const field_basic<T,M>& uh, const field_basic<T,M>& vh) const; // io: odiststream& put (odiststream& ops, bool show_partition = true) const; void dump (std::string name) const; // accessors & modifiers to unknown & blocked parts: const csr<T,M>& uu() const { return _uu; } const csr<T,M>& ub() const { return _ub; } const csr<T,M>& bu() const { return _bu; } const csr<T,M>& bb() const { return _bb; } csr<T,M>& set_uu() { return _uu; } csr<T,M>& set_ub() { return _ub; } csr<T,M>& set_bu() { return _bu; } csr<T,M>& set_bb() { return _bb; } // data protected: space_type _X; space_type _Y; csr<T,M> _uu; csr<T,M> _ub; csr<T,M> _bu; csr<T,M> _bb; // internals: void assembly (const form_element<T,M>& form_e, const geo_basic<T,M>& X_geo, const geo_basic<T,M>& Y_geo, bool X_geo_is_background = true); void form_init ( const std::string& name, bool has_weight, const field_basic<T,M>& weight, quadrature_option_type qopt); }; template<class T, class M> form_basic<T,M> trans (const form_basic<T,M>& a); typedef form_basic<Float,rheo_default_memory_model> form; SEE ALSO
field(2), csr(2), space(2), csr(2) rheolef-6.1 rheolef-6.1 form(2rheolef)
Man Page