Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zlaed0(l) [redhat man page]

ZLAED0(l)								 )								 ZLAED0(l)

NAME
ZLAED0 - the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix SYNOPSIS
SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO ) INTEGER INFO, LDQ, LDQS, N, QSIZ INTEGER IWORK( * ) DOUBLE PRECISION D( * ), E( * ), RWORK( * ) COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * ) PURPOSE
Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix. ARGUMENTS
QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix mul- tiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). LAPACK version 3.0 15 June 2000 ZLAED0(l)

Check Out this Related Man Page

claed0.f(3)							      LAPACK							       claed0.f(3)

NAME
claed0.f - SYNOPSIS
Functions/Subroutines subroutine claed0 (QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO) CLAED0 Function/Subroutine Documentation subroutine claed0 (integerQSIZ, integerN, real, dimension( * )D, real, dimension( * )E, complex, dimension( ldq, * )Q, integerLDQ, complex, dimension( ldqs, * )QSTORE, integerLDQS, real, dimension( * )RWORK, integer, dimension( * )IWORK, integerINFO) CLAED0 Purpose: Using the divide and conquer method, CLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix. Parameters: QSIZ QSIZ is INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D D is REAL array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E E is REAL array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q Q is COMPLEX array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK IWORK is INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK RWORK is REAL array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE QSTORE is COMPLEX array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS LDQS is INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 145 of file claed0.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 claed0.f(3)
Man Page