Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

slatrz(l) [redhat man page]

SLATRZ(l)								 )								 SLATRZ(l)

NAME
SLATRZ - factor the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogo- nal transformations SYNOPSIS
SUBROUTINE SLATRZ( M, N, L, A, LDA, TAU, WORK ) INTEGER L, LDA, M, N REAL A( LDA, * ), TAU( * ), WORK( * ) PURPOSE
SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogo- nal transformations. Z is an (M+L)-by-(M+L) orthogonal matrix and, R and A1 are M-by-M upper triangular matrices. ARGUMENTS
M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. L (input) INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) REAL array, dimension (M) The scalar factors of the elementary reflectors. WORK (workspace) REAL array, dimension (M) FURTHER DETAILS
Based on contributions by A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). LAPACK version 3.0 15 June 2000 SLATRZ(l)

Check Out this Related Man Page

STZRQF(l)								 )								 STZRQF(l)

NAME
STZRQF - routine is deprecated and has been replaced by routine STZRZF SYNOPSIS
SUBROUTINE STZRQF( M, N, A, LDA, TAU, INFO ) INTEGER INFO, LDA, M, N REAL A( LDA, * ), TAU( * ) PURPOSE
This routine is deprecated and has been replaced by routine STZRZF. STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as A = ( R 0 ) * Z, where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix. ARGUMENTS
M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= M. A (input/output) REAL array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) REAL array, dimension (M) The scalar factors of the elementary reflectors. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value FURTHER DETAILS
The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an ( n - m ) element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of X. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A, such that the elements of z( k ) are in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). LAPACK version 3.0 15 June 2000 STZRQF(l)
Man Page