Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

sgerfs(l) [redhat man page]

SGERFS(l)								 )								 SGERFS(l)

NAME
SGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion SYNOPSIS
SUBROUTINE SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ), IWORK( * ) REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ), X( LDX, * ) PURPOSE
SGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion. ARGUMENTS
TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) REAL array, dimension (LDA,N) The original N-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) REAL array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by SGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from SGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B (input) REAL array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) REAL array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by SGETRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) REAL array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value PARAMETERS
ITMAX is the maximum number of steps of iterative refinement. LAPACK version 3.0 15 June 2000 SGERFS(l)

Check Out this Related Man Page

DGERFS(l)								 )								 DGERFS(l)

NAME
DGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion SYNOPSIS
SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ), X( LDX, * ) PURPOSE
DGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion. ARGUMENTS
TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The original N-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) DOUBLE PRECISION array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from DGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DGETRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) DOUBLE PRECISION array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value PARAMETERS
ITMAX is the maximum number of steps of iterative refinement. LAPACK version 3.0 15 June 2000 DGERFS(l)
Man Page