Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dorgbr(l) [redhat man page]

DORGBR(l)								 )								 DORGBR(l)

NAME
DORGBR - generate one of the real orthogonal matrices Q or P**T determined by DGEBRD when reducing a real matrix A to bidiagonal form SYNOPSIS
SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) CHARACTER VECT INTEGER INFO, K, LDA, LWORK, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) PURPOSE
DORGBR generates one of the real orthogonal matrices Q or P**T determined by DGEBRD when reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T are defined as products of elementary reflectors H(i) or G(i) respectively. If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q is of order M: if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n columns of Q, where m >= n >= k; if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an M-by-M matrix. If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T is of order N: if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m rows of P**T, where n >= m >= k; if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as an N-by-N matrix. ARGUMENTS
VECT (input) CHARACTER*1 Specifies whether the matrix Q or the matrix P**T is required, as defined in the transformation applied by DGEBRD: = 'Q': generate Q; = 'P': generate P**T. M (input) INTEGER The number of rows of the matrix Q or P**T to be returned. M >= 0. N (input) INTEGER The number of columns of the matrix Q or P**T to be returned. N >= 0. If VECT = 'Q', M >= N >= min(M,K); if VECT = 'P', N >= M >= min(N,K). K (input) INTEGER If VECT = 'Q', the number of columns in the original M-by-K matrix reduced by DGEBRD. If VECT = 'P', the number of rows in the original K-by-N matrix reduced by DGEBRD. K >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by DGEBRD. On exit, the M-by-N matrix Q or P**T. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (input) DOUBLE PRECISION array, dimension (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P' TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or P**T, as returned by DGEBRD in its array argument TAUQ or TAUP. WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,min(M,N)). For optimum performance LWORK >= min(M,N)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK version 3.0 15 June 2000 DORGBR(l)

Check Out this Related Man Page

CUNGBR(l)								 )								 CUNGBR(l)

NAME
CUNGBR - generate one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a complex matrix A to bidiagonal form SYNOPSIS
SUBROUTINE CUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) CHARACTER VECT INTEGER INFO, K, LDA, LWORK, M, N COMPLEX A( LDA, * ), TAU( * ), WORK( * ) PURPOSE
CUNGBR generates one of the complex unitary matrices Q or P**H determined by CGEBRD when reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively. If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q is of order M: if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n columns of Q, where m >= n >= k; if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an M-by-M matrix. If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H is of order N: if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m rows of P**H, where n >= m >= k; if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as an N-by-N matrix. ARGUMENTS
VECT (input) CHARACTER*1 Specifies whether the matrix Q or the matrix P**H is required, as defined in the transformation applied by CGEBRD: = 'Q': generate Q; = 'P': generate P**H. M (input) INTEGER The number of rows of the matrix Q or P**H to be returned. M >= 0. N (input) INTEGER The number of columns of the matrix Q or P**H to be returned. N >= 0. If VECT = 'Q', M >= N >= min(M,K); if VECT = 'P', N >= M >= min(N,K). K (input) INTEGER If VECT = 'Q', the number of columns in the original M-by-K matrix reduced by CGEBRD. If VECT = 'P', the number of rows in the original K-by-N matrix reduced by CGEBRD. K >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEBRD. On exit, the M-by-N matrix Q or P**H. LDA (input) INTEGER The leading dimension of the array A. LDA >= M. TAU (input) COMPLEX array, dimension (min(M,K)) if VECT = 'Q' (min(N,K)) if VECT = 'P' TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or P**H, as returned by CGEBRD in its array argument TAUQ or TAUP. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,min(M,N)). For optimum performance LWORK >= min(M,N)*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK version 3.0 15 June 2000 CUNGBR(l)
Man Page