Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dgerfs(l) [redhat man page]

DGERFS(l)								 )								 DGERFS(l)

NAME
DGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion SYNOPSIS
SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ), X( LDX, * ) PURPOSE
DGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion. ARGUMENTS
TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The original N-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) DOUBLE PRECISION array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by DGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from DGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DGETRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) DOUBLE PRECISION array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value PARAMETERS
ITMAX is the maximum number of steps of iterative refinement. LAPACK version 3.0 15 June 2000 DGERFS(l)

Check Out this Related Man Page

ZGERFS(l)								 )								 ZGERFS(l)

NAME
ZGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion SYNOPSIS
SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ) DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), WORK( * ), X( LDX, * ) PURPOSE
ZGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solu- tion. ARGUMENTS
TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The original N-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) COMPLEX*16 array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from ZGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B (input) COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZGETRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value PARAMETERS
ITMAX is the maximum number of steps of iterative refinement. LAPACK version 3.0 15 June 2000 ZGERFS(l)
Man Page