Small communication server for messaging and calling

 
Thread Tools Search this Thread
Special Forums UNIX and Linux Applications Small communication server for messaging and calling
# 1  
Old 03-26-2018
Small communication server for messaging and calling

Hello,
just a silly question, do you know some server that can be used for simple calling (soft phone on Android) and messaging between three users? Something like Asterisk but lightweight just for family use I can add to my VPS.

Many thanks,
Stan
Login or Register to Ask a Question

Previous Thread | Next Thread

5 More Discussions You Might Find Interesting

1. Programming

please help a problem in client-server ipc message 2 pipes communication simple example

I want to have a message send & receive through 2 half-duplex pipes Flow of data top half pipe stdin--->parent(client) fd1--->pipe1-->child(server) fd1 bottom half pipe child(server) fd2---->pipe2--->parent(client) fd2--->stdout I need to have boundary structed message... (1 Reply)
Discussion started by: ouou
1 Replies

2. Shell Programming and Scripting

main program is not calling small other programs

I am trying to understand a program in a book and this program suppose to call other programs which are in the same folder, the other programs are called 'lu' and 'add' but for some reason when it gets to the last line of each case to call these programs there is an error message saying ./rolo:... (2 Replies)
Discussion started by: bartsimpsong
2 Replies

3. UNIX for Advanced & Expert Users

Routing Emails, Sun One Messaging Server

Hello, i have Sun one Messaging Server 6.3 Up and running, i want to route emails that are destined to a certain email address, let's say test@mydomain.com through the tcp_local channel for example, to another email, and not allowing test@mydomain.com to receive them. So in short, i want... (0 Replies)
Discussion started by: lemonshare
0 Replies

4. Programming

Client server communication using FIFO.

Hiii..... I need a client server communication using a FIFO. Sever is contacted by multiple clients.Each client writes its request to a FIFO.The server replies back to the client through a client specific FIFO. give any link to sample FIFO programs.......... Thanking you KRISH:cool: (1 Reply)
Discussion started by: krishnampkkm
1 Replies

5. Solaris

how to install iplanet messaging server 5.2 on solaris 10

hi all, I want to install iplanet messaging service in solaris 10. if it is possible plz send the procedure for installation.its urgent plz regards spandan (2 Replies)
Discussion started by: spandhan
2 Replies
Login or Register to Ask a Question
ZMQ(7)								    0MQ Manual								    ZMQ(7)

NAME
zmq - 0MQ lightweight messaging kernel SYNOPSIS
#include <zmq.h> cc [flags] files -lzmq [libraries] DESCRIPTION
The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more. This documentation presents an overview of 0MQ concepts, describes how 0MQ abstracts standard sockets and provides a reference manual for the functions provided by the 0MQ library. Context Before using any 0MQ library functions the caller must initialise a 0MQ context using zmq_init(). The following functions are provided to handle initialisation and termination of a context: Initialise 0MQ context zmq_init(3) Terminate 0MQ context zmq_term(3) Thread safety A 0MQ context is thread safe and may be shared among as many application threads as necessary, without any additional locking required on the part of the caller. Individual 0MQ sockets are not thread safe except in the case where full memory barriers are issued when migrating a socket from one thread to another. In practice this means applications can create a socket in one thread with zmq_socket() and then pass it to a newly created thread as part of thread initialization, for example via a structure passed as an argument to pthread_create(). Multiple contexts Multiple contexts may coexist within a single application. Thus, an application can use 0MQ directly and at the same time make use of any number of additional libraries or components which themselves make use of 0MQ as long as the above guidelines regarding thread safety are adhered to. Messages A 0MQ message is a discrete unit of data passed between applications or components of the same application. 0MQ messages have no internal structure and from the point of view of 0MQ itself they are considered to be opaque binary data. The following functions are provided to work with messages: Initialise a message zmq_msg_init(3) zmq_msg_init_size(3) zmq_msg_init_data(3) Release a message zmq_msg_close(3) Access message content zmq_msg_data(3) zmq_msg_size(3) Message manipulation zmq_msg_copy(3) zmq_msg_move(3) Sockets 0MQ sockets present an abstraction of a asynchronous message queue, with the exact queueing semantics depending on the socket type in use. See zmq_socket(3) for the socket types provided. The following functions are provided to work with sockets: Creating a socket zmq_socket(3) Closing a socket zmq_close(3) Manipulating socket options zmq_getsockopt(3) zmq_setsockopt(3) Establishing a message flow zmq_bind(3) zmq_connect(3) Sending and receiving messages zmq_send(3) zmq_recv(3) Input/output multiplexing. 0MQ provides a mechanism for applications to multiplex input/output events over a set containing both 0MQ sockets and standard sockets. This mechanism mirrors the standard poll() system call, and is described in detail in zmq_poll(3). Transports A 0MQ socket can use multiple different underlying transport mechanisms. Each transport mechanism is suited to a particular purpose and has its own advantages and drawbacks. The following transport mechanisms are provided: Unicast transport using TCP zmq_tcp(7) Reliable multicast transport using PGM zmq_pgm(7) Local inter-process communication transport zmq_ipc(7) Local in-process (inter-thread) communication transport zmq_inproc(7) Devices 0MQ provides devices, which are building blocks that act as intermediate nodes in complex messaging topologies. Devices can act as brokers that other nodes connect to, proxies that connect through to other nodes, or any mix of these two models. You can start a device in an application thread, see zmq_device(3). ERROR HANDLING
The 0MQ library functions handle errors using the standard conventions found on POSIX systems. Generally, this means that upon failure a 0MQ library function shall return either a NULL value (if returning a pointer) or a negative value (if returning an integer), and the actual error code shall be stored in the errno variable. On non-POSIX systems some users may experience issues with retrieving the correct value of the errno variable. The zmq_errno() function is provided to assist in these cases; for details refer to zmq_errno(3). The zmq_strerror() function is provided to translate 0MQ-specific error codes into error message strings; for details refer to zmq_strerror(3). MISCELLANEOUS
The following miscellaneous functions are provided: Report 0MQ library version zmq_version(3) LANGUAGE BINDINGS
The 0MQ library provides interfaces suitable for calling from programs in any language; this documentation documents those interfaces as they would be used by C programmers. The intent is that programmers using 0MQ from other languages shall refer to this documentation alongside any documentation provided by the vendor of their language binding. C++ language binding The 0MQ distribution includes a C++ language binding, which is documented separately in zmq_cpp(7). Other language bindings Other language bindings (Python, Ruby, Java and more) are provided by members of the 0MQ community and pointers can be found on the 0MQ website. AUTHORS
This manual page was written by the 0MQ community. RESOURCES
Main web site: http://www.zeromq.org/ Report bugs to the 0MQ development mailing list: <zeromq-dev@lists.zeromq.org[1]> COPYING
Free use of this software is granted under the terms of the GNU Lesser General Public License (LGPL). For details see the files COPYING and COPYING.LESSER included with the 0MQ distribution. NOTES
1. zeromq-dev@lists.zeromq.org mailto:zeromq-dev@lists.zeromq.org 0MQ 2.2.0 04/04/2012 ZMQ(7)