redhat man page for zlaed0

Query: zlaed0

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

ZLAED0(l)								 )								 ZLAED0(l)

NAME
ZLAED0 - the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix
SYNOPSIS
SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO ) INTEGER INFO, LDQ, LDQS, N, QSIZ INTEGER IWORK( * ) DOUBLE PRECISION D( * ), E( * ), RWORK( * ) COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )
PURPOSE
Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.
ARGUMENTS
QSIZ (input) INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix mul- tiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). LAPACK version 3.0 15 June 2000 ZLAED0(l)
Related Man Pages
claed0(l) - redhat
slaed0(l) - redhat
dlaed0.f(3) - debian
claed0(3) - centos
zlaed0(3) - centos
Similar Topics in the Unix Linux Community
compilation problem on powerpc-ibm-aix5.2.0.0--Xlf