redhat man page for stgex2

Query: stgex2

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

STGEX2(l)								 )								 STGEX2(l)

NAME
STGEX2 - swap adjacent diagonal blocks (A11, B11) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal equivalence transformation
SYNOPSIS
SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, N1, N2, WORK, LWORK, INFO ) LOGICAL WANTQ, WANTZ INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
PURPOSE
STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal equivalence transformation. (A, B) must be in generalized real Schur canonical form (as returned by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
ARGUMENTS
WANTQ (input) LOGICAL WANTZ (input) LOGICAL N (input) INTEGER The order of the matrices A and B. N >= 0. A (input/output) REAL arrays, dimensions (LDA,N) On entry, the matrix A in the pair (A, B). On exit, the updated matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) REAL arrays, dimensions (LDB,N) On entry, the matrix B in the pair (A, B). On exit, the updated matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). Q (input/output) REAL array, dimension (LDZ,N) On entry, if WANTQ = .TRUE., the orthogonal matrix Q. On exit, the updated matrix Q. Not referenced if WANTQ = .FALSE.. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= 1. If WANTQ = .TRUE., LDQ >= N. Z (input/output) REAL array, dimension (LDZ,N) On entry, if WANTZ =.TRUE., the orthogonal matrix Z. On exit, the updated matrix Z. Not referenced if WANTZ = .FALSE.. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1. If WANTZ = .TRUE., LDZ >= N. J1 (input) INTEGER The index to the first block (A11, B11). 1 <= J1 <= N. N1 (input) INTEGER The order of the first block (A11, B11). N1 = 0, 1 or 2. N2 (input) INTEGER The order of the second block (A22, B22). N2 = 0, 1 or 2. WORK (workspace) REAL array, dimension (LWORK). LWORK (input) INTEGER The dimension of the array WORK. LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 ) INFO (output) INTEGER =0: Successful exit >0: If INFO = 1, the transformed matrix (A, B) would be too far from generalized Schur form; the blocks are not swapped and (A, B) and (Q, Z) are unchanged. The problem of swapping is too ill-conditioned. <0: If INFO = -16: LWORK is too small. Appropriate value for LWORK is returned in WORK(1).
FURTHER DETAILS
Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. In the current code both weak and strong stability tests are performed. The user can omit the strong stability test by changing the inter- nal logical parameter WANDS to .FALSE.. See ref. [2] for details. [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996. LAPACK version 3.0 15 June 2000 STGEX2(l)
Related Man Pages
ctgex2.f(3) - centos
stgex2(3) - debian
dtgex2(3) - centos
stgex2(3) - centos
dtgex2.f(3) - centos
Similar Topics in the Unix Linux Community
[Solved] Mathematical operation in multiple files