Query: sptts2
OS: redhat
Section: l
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
SPTTS2(l) ) SPTTS2(l)NAMESPTTS2 - solve a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRFSYNOPSISSUBROUTINE SPTTS2( N, NRHS, D, E, B, LDB ) INTEGER LDB, N, NRHS REAL B( LDB, * ), D( * ), E( * )PURPOSESPTTS2 solves a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by SPTTRF. D is a diagonal matrix specified in the vector D, L is a unit bidiagonal matrix whose subdiagonal is specified in the vector E, and X and B are N by NRHS matri- ces.ARGUMENTSN (input) INTEGER The order of the tridiagonal matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D (input) REAL array, dimension (N) The n diagonal elements of the diagonal matrix D from the L*D*L' factorization of A. E (input) REAL array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L' factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the factorization A = U'*D*U. B (input/output) REAL array, dimension (LDB,NRHS) On entry, the right hand side vectors B for the system of linear equations. On exit, the solution vectors, X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). LAPACK version 3.0 15 June 2000 SPTTS2(l)