redhat man page for spbequ

Query: spbequ

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

SPBEQU(l)								 )								 SPBEQU(l)

NAME
SPBEQU - compute row and column scalings intended to equilibrate a symmetric positive definite band matrix A and reduce its condition num- ber (with respect to the two-norm)
SYNOPSIS
SUBROUTINE SPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO ) CHARACTER UPLO INTEGER INFO, KD, LDAB, N REAL AMAX, SCOND REAL AB( LDAB, * ), S( * )
PURPOSE
SPBEQU computes row and column scalings intended to equilibrate a symmetric positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest pos- sible condition number over all possible diagonal scalings.
ARGUMENTS
UPLO (input) CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB (input) REAL array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). LDAB (input) INTEGER The leading dimension of the array A. LDAB >= KD+1. S (output) REAL array, dimension (N) If INFO = 0, S contains the scale factors for A. SCOND (output) REAL If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S. AMAX (output) REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive. LAPACK version 3.0 15 June 2000 SPBEQU(l)
Related Man Pages
dpbequ(l) - redhat
sppequ(l) - redhat
spbequ(3) - centos
cpbequ.f(3) - centos
spbequ.f(3) - centos
Similar Topics in the Unix Linux Community
Reformatting data in matrix form
write a matrix element, if the &quot;if&quot; condition satisfies