Query: slatdf
OS: redhat
Section: l
Links: redhat man pages all man pages
Forums: unix linux community forum categories
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
SLATDF(l) ) SLATDF(l)NAMESLATDF - use the LU factorization of the n-by-n matrix Z computed by SGETC2 and computes a contribution to the reciprocal Dif-estimate by solving Z * x = b for x, and choosing the r.h.sSYNOPSISSUBROUTINE SLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV ) INTEGER IJOB, LDZ, N REAL RDSCAL, RDSUM INTEGER IPIV( * ), JPIV( * ) REAL RHS( * ), Z( LDZ, * )PURPOSESLATDF uses the LU factorization of the n-by-n matrix Z computed by SGETC2 and computes a contribution to the reciprocal Dif-estimate by solving Z * x = b for x, and choosing the r.h.s. b such that the norm of x is as large as possible. On entry RHS = b holds the contribution from earlier solved sub-systems, and on return RHS = x. The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q, where P and Q are permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular.ARGUMENTSIJOB (input) INTEGER IJOB = 2: First compute an approximative null-vector e of Z using SGECON, e is normalized and solve for Zx = +-e - f with the sign giving the greater value of 2-norm(x). About 5 times as expensive as Default. IJOB .ne. 2: Local look ahead strategy where all entries of the r.h.s. b is choosen as either +1 or -1 (Default). N (input) INTEGER The number of columns of the matrix Z. Z (input) REAL array, dimension (LDZ, N) On entry, the LU part of the factorization of the n-by-n matrix Z computed by SGETC2: Z = P * L * U * Q LDZ (input) INTEGER The leading dimension of the array Z. LDA >= max(1, N). RHS (input/output) REAL array, dimension N. On entry, RHS contains contributions from other subsystems. On exit, RHS contains the solution of the subsystem with entries aco- ording to the value of IJOB (see above). RDSUM (input/output) REAL On entry, the sum of squares of computed contributions to the Dif-estimate under computation by STGSYL, where the scaling factor RDSCAL (see below) has been factored out. On exit, the corresponding sum of squares updated with the contributions from the cur- rent sub-system. If TRANS = 'T' RDSUM is not touched. NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. RDSCAL (input/output) REAL On entry, scaling factor used to prevent overflow in RDSUM. On exit, RDSCAL is updated w.r.t. the current contributions in RDSUM. If TRANS = 'T', RDSCAL is not touched. NOTE: RDSCAL only makes sense when STGSY2 is called by STGSYL. IPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j).FURTHER DETAILSBased on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization. [1] Bo Kagstrom and Lars Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. [2] Peter Poromaa, On Efficient and Robust Estimators for the Separation between two Regular Matrix Pairs with Applications in Condition Estimation. Report IMINF-95.05, Departement of Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. LAPACK version 3.0 15 June 2000 SLATDF(l)