redhat man page for slagv2

Query: slagv2

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

SLAGV2(l)								 )								 SLAGV2(l)

NAME
SLAGV2 - compute the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
SYNOPSIS
SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR ) INTEGER LDA, LDB REAL CSL, CSR, SNL, SNR REAL A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), B( LDB, * ), BETA( 2 )
PURPOSE
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0.
ARGUMENTS
A (input/output) REAL array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA (input) INTEGER THe leading dimension of the array A. LDA >= 2. B (input/output) REAL array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB (input) INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR (output) REAL array, dimension (2) ALPHAI (output) REAL array, dimension (2) BETA (output) REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the ei- genvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL (output) REAL The cosine of the left rotation matrix. SNL (output) REAL The sine of the left rotation matrix. CSR (output) REAL The cosine of the right rotation matrix. SNR (output) REAL The sine of the right rotation matrix.
FURTHER DETAILS
Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA LAPACK version 3.0 15 June 2000 SLAGV2(l)
Related Man Pages
slasv2(l) - redhat
dlagv2(3) - debian
slagv2(3) - debian
dlagv2.f(3) - debian
dlagv2.f(3) - centos
Similar Topics in the Unix Linux Community
Reduced Activity Notification
Create an unconfigured VMware host from a template that is set to do firstboot --reconfig
Tar Command
Docker learning Phase-I
Package