redhat man page for sgelss

Query: sgelss

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

SGELSS(l)								 )								 SGELSS(l)

NAME
SGELSS - compute the minimum norm solution to a real linear least squares problem
SYNOPSIS
SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK REAL RCOND REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
PURPOSE
SGELSS computes the minimum norm solution to a real linear least squares problem: Minimize 2-norm(| b - A*x |). using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.
ARGUMENTS
M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the first min(m,n) rows of A are overwritten with its right singular vectors, stored row- wise. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) REAL array, dimension (LDB,NRHS) On entry, the M-by-NRHS right hand side matrix B. On exit, B is overwritten by the N-by-NRHS solution matrix X. If m >= n and RANK = n, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements n+1:m in that column. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,max(M,N)). S (output) REAL array, dimension (min(M,N)) The singular values of A in decreasing order. The condition number of A in the 2-norm = S(1)/S(min(m,n)). RCOND (input) REAL RCOND is used to determine the effective rank of A. Singular values S(i) <= RCOND*S(1) are treated as zero. If RCOND < 0, machine precision is used instead. RANK (output) INTEGER The effective rank of A, i.e., the number of singular values which are greater than RCOND*S(1). WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 1, and also: LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS ) For good perfor- mance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: the algorithm for computing the SVD failed to converge; if INFO = i, i off-diagonal elements of an intermediate bidiagonal form did not converge to zero. LAPACK version 3.0 15 June 2000 SGELSS(l)
Related Man Pages
cgelss(l) - redhat
dgelss(l) - redhat
cgelss.f(3) - debian
dgelss.f(3) - debian
dgelss(3) - centos
Similar Topics in the Unix Linux Community
Querying database from unix
how to flip values of two columns and add an extra column
awk- reading input file twice
Concatenate two lines in a fIle
Timestamp problem