redhat man page for dsprfs

Query: dsprfs

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

DSPRFS(l)								 )								 DSPRFS(l)

NAME
DSPRFS - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution
SYNOPSIS
SUBROUTINE DSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO ) CHARACTER UPLO INTEGER INFO, LDB, LDX, N, NRHS INTEGER IPIV( * ), IWORK( * ) DOUBLE PRECISION AFP( * ), AP( * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
PURPOSE
DSPRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution.
ARGUMENTS
UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) The upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) The factored form of the matrix A. AFP contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as a packed triangular matrix. IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSPTRF. B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DSPTRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) DOUBLE PRECISION array, dimension (3*N) IWORK (workspace) INTEGER array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
PARAMETERS
ITMAX is the maximum number of steps of iterative refinement. LAPACK version 3.0 15 June 2000 DSPRFS(l)
Related Man Pages
csprfs(l) - redhat
dpbrfs(l) - redhat
dsprfs(l) - redhat
dsyrfs(l) - redhat
dsprfs.f(3) - debian
Similar Topics in the Unix Linux Community
How to capture ^x,^y via bash script?
Reduced Activity Notification
Tar Command
Package
[TIP] Processing YAML files with yq