redhat man page for dlar1v

Query: dlar1v

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

DLAR1V(l)								 )								 DLAR1V(l)

NAME
DLAR1V - compute the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L^T - sigma I
SYNOPSIS
SUBROUTINE DLAR1V( N, B1, BN, SIGMA, D, L, LD, LLD, GERSCH, Z, ZTZ, MINGMA, R, ISUPPZ, WORK ) INTEGER B1, BN, N, R DOUBLE PRECISION MINGMA, SIGMA, ZTZ INTEGER ISUPPZ( * ) DOUBLE PRECISION D( * ), GERSCH( * ), L( * ), LD( * ), LLD( * ), WORK( * ), Z( * )
PURPOSE
DLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L^T - sigma I. The following steps accomplish this computation : (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T, (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T, (c) Computation of the diagonal elements of the inverse of L D L^T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform.
ARGUMENTS
N (input) INTEGER The order of the matrix L D L^T. B1 (input) INTEGER First index of the submatrix of L D L^T. BN (input) INTEGER Last index of the submatrix of L D L^T. SIGMA (input) DOUBLE PRECISION The shift. Initially, when R = 0, SIGMA should be a good approximation to an eigenvalue of L D L^T. L (input) DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal matrix L, in elements 1 to N-1. D (input) DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D. LD (input) DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*D(i). LLD (input) DOUBLE PRECISION array, dimension (N-1) The n-1 elements L(i)*L(i)*D(i). GERSCH (input) DOUBLE PRECISION array, dimension (2*N) The n Gerschgorin intervals. These are used to restrict the initial search for R, when R is input as 0. Z (output) DOUBLE PRECISION array, dimension (N) The (scaled) r-th column of the inverse. Z(R) is returned to be 1. ZTZ (output) DOUBLE PRECISION The square of the norm of Z. MINGMA (output) DOUBLE PRECISION The reciprocal of the largest (in magnitude) diagonal element of the inverse of L D L^T - sigma I. R (input/output) INTEGER Initially, R should be input to be 0 and is then output as the index where the diagonal element of the inverse is largest in mag- nitude. In later iterations, this same value of R should be input. ISUPPZ (output) INTEGER array, dimension (2) The support of the vector in Z, i.e., the vector Z is nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
FURTHER DETAILS
Based on contributions by Inderjit Dhillon, IBM Almaden, USA Osni Marques, LBNL/NERSC, USA LAPACK version 3.0 15 June 2000 DLAR1V(l)
Related Man Pages
dlar1v(l) - redhat
dlarrf(l) - redhat
slar1v(l) - redhat
dlar1v(3) - debian
slar1v(3) - centos
Similar Topics in the Unix Linux Community
3 column .csv --> correlation matrix; awk, perl?