redhat man page for dlagv2

Query: dlagv2

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

DLAGV2(l)								 )								 DLAGV2(l)

NAME
DLAGV2 - compute the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
SYNOPSIS
SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR ) INTEGER LDA, LDB DOUBLE PRECISION CSL, CSR, SNL, SNR DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), B( LDB, * ), BETA( 2 )
PURPOSE
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0.
ARGUMENTS
A (input/output) DOUBLE PRECISION array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA (input) INTEGER THe leading dimension of the array A. LDA >= 2. B (input/output) DOUBLE PRECISION array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB (input) INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR (output) DOUBLE PRECISION array, dimension (2) ALPHAI (output) DOUBLE PRECISION array, dimension (2) BETA (output) DOUBLE PRECISION array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL (output) DOUBLE PRECISION The cosine of the left rotation matrix. SNL (output) DOUBLE PRECISION The sine of the left rotation matrix. CSR (output) DOUBLE PRECISION The cosine of the right rotation matrix. SNR (output) DOUBLE PRECISION The sine of the right rotation matrix.
FURTHER DETAILS
Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA LAPACK version 3.0 15 June 2000 DLAGV2(l)
Related Man Pages
dlasv2(l) - redhat
slagv2(l) - redhat
dlasv2(3) - debian
dlasv2.f(3) - debian
slagv2.f(3) - debian
Similar Topics in the Unix Linux Community
Docker learning Phase-I
Issue with "rsh" on RedHat
About TODO
[TIP] Processing YAML files with yq