Query: dlaev2
OS: redhat
Section: l
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
DLAEV2(l) ) DLAEV2(l)NAMEDLAEV2 - compute the eigendecomposition of a 2-by-2 symmetric matrix [ A B ] [ B C ]SYNOPSISSUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1PURPOSEDLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix [ A B ] [ B C ]. On return, RT1 is the eigenvalue of larger absolute value, RT2 is the eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right eigenvector for RT1, giving the decomposition [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].ARGUMENTSA (input) DOUBLE PRECISION The (1,1) element of the 2-by-2 matrix. B (input) DOUBLE PRECISION The (1,2) element and the conjugate of the (2,1) element of the 2-by-2 matrix. C (input) DOUBLE PRECISION The (2,2) element of the 2-by-2 matrix. RT1 (output) DOUBLE PRECISION The eigenvalue of larger absolute value. RT2 (output) DOUBLE PRECISION The eigenvalue of smaller absolute value. CS1 (output) DOUBLE PRECISION SN1 (output) DOUBLE PRECISION The vector (CS1, SN1) is a unit right eigenvector for RT1.FURTHER DETAILSRT1 is accurate to a few ulps barring over/underflow. RT2 may be inaccurate if there is massive cancellation in the determinant A*C-B*B; higher precision or correctly rounded or correctly trun- cated arithmetic would be needed to compute RT2 accurately in all cases. CS1 and SN1 are accurate to a few ulps barring over/underflow. Overflow is possible only if RT1 is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps. LAPACK version 3.0 15 June 2000 DLAEV2(l)
Related Man Pages |
---|
claev2(l) - redhat |
dlaev2(l) - redhat |
slaev2(3) - debian |
dlaev2.f(3) - debian |
zlaev2(3) - centos |
Similar Topics in the Unix Linux Community |
---|
Grep char count & pipe to sed command |
Need help parsing a file |