redhat man page for dgesdd

Query: dgesdd

OS: redhat

Section: l

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

DGESDD(l)								 )								 DGESDD(l)

NAME
DGESDD - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors
SYNOPSIS
SUBROUTINE DGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, IWORK, INFO ) CHARACTER JOBZ INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
PURPOSE
DGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written A = U * SIGMA * transpose(V) where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N- by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A. Note that the routine returns VT = V**T, not V. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
ARGUMENTS
JOBZ (input) CHARACTER*1 Specifies options for computing all or part of the matrix U: = 'A': all M columns of U and all N rows of V**T are returned in the arrays U and VT; = 'S': the first min(M,N) columns of U and the first min(M,N) rows of V**T are returned in the arrays U and VT; = 'O': If M >= N, the first N columns of U are overwritten on the array A and all rows of V**T are returned in the array VT; otherwise, all columns of U are returned in the array U and the first M rows of V**T are overwritten in the array VT; = 'N': no columns of U or rows of V**T are computed. M (input) INTEGER The number of rows of the input matrix A. M >= 0. N (input) INTEGER The number of columns of the input matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if JOBZ = 'O', A is overwritten with the first N columns of U (the left singular vectors, stored columnwise) if M >= N; A is overwritten with the first M rows of V**T (the right singular vectors, stored rowwise) other- wise. if JOBZ .ne. 'O', the contents of A are destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). S (output) DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). U (output) DOUBLE PRECISION array, dimension (LDU,UCOL) UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; UCOL = min(M,N) if JOBZ = 'S'. If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M orthogonal matrix U; if JOBZ = 'S', U contains the first min(M,N) columns of U (the left singular vectors, stored colum- nwise); if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. LDU (input) INTEGER The leading dimension of the array U. LDU >= 1; if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. VT (output) DOUBLE PRECISION array, dimension (LDVT,N) If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the N-by-N orthogonal matrix V**T; if JOBZ = 'S', VT contains the first min(M,N) rows of V**T (the right singular vectors, stored rowwise); if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. LDVT (input) INTEGER The leading dimension of the array VT. LDVT >= 1; if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; if JOBZ = 'S', LDVT >= min(M,N). WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK; LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 1. If JOBZ = 'N', LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)). If JOBZ = 'O', LWORK >= 3*min(M,N)*min(M,N) + max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). If JOBZ = 'S' or 'A' LWORK >= 3*min(M,N)*min(M,N) + max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). For good performance, LWORK should generally be larger. If LWORK < 0 but other input arguments are legal, WORK(1) returns the optimal LWORK. IWORK (workspace) INTEGER array, dimension (8*min(M,N)) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: DBDSDC did not converge, updating process failed.
FURTHER DETAILS
Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA LAPACK version 3.0 15 June 2000 DGESDD(l)
Related Man Pages
cgesdd(l) - redhat
dgesdd(l) - redhat
sgesdd(l) - redhat
dgesdd.f(3) - debian
dgesdd.f(3) - centos
Similar Topics in the Unix Linux Community
Querying database from unix
Need help to subtract columns from 2 files and output to new file
print max number of 2 columns - awk
Median and max of duplicate rows
awk search for max and min while ignoring special character