redhat man page for pdl::gslsf::ellint

Query: pdl::gslsf::ellint

OS: redhat

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

ELLINT(3)						User Contributed Perl Documentation						 ELLINT(3)

NAME
PDL::GSLSF::ELLINT - PDL interface to GSL Special Functions
DESCRIPTION
This is an interface to the Special Function package present in the GNU Scientific Library.
SYNOPSIS
Functions
FUNCTIONS
gsl_sf_ellint_Kcomp Signature: (double k(); double [o]y(); double [o]e()) Legendre form of complete elliptic integrals K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]. gsl_sf_ellint_Ecomp Signature: (double k(); double [o]y(); double [o]e()) Legendre form of complete elliptic integrals E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] gsl_sf_ellint_F Signature: (double phi(); double k(); double [o]y(); double [o]e()) Legendre form of incomplete elliptic integrals F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] gsl_sf_ellint_E Signature: (double phi(); double k(); double [o]y(); double [o]e()) Legendre form of incomplete elliptic integrals E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] gsl_sf_ellint_P Signature: (double phi(); double k(); double n(); double [o]y(); double [o]e()) Legendre form of incomplete elliptic integrals P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] gsl_sf_ellint_D Signature: (double phi(); double k(); double n(); double [o]y(); double [o]e()) Legendre form of incomplete elliptic integrals D(phi,k,n) gsl_sf_ellint_RC Signature: (double x(); double yy(); double [o]y(); double [o]e()) Carlsons symmetric basis of functions RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf} gsl_sf_ellint_RD Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e()) Carlsons symmetric basis of functions RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}] gsl_sf_ellint_RF Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e()) Carlsons symmetric basis of functions RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}] gsl_sf_ellint_RJ Signature: (double x(); double yy(); double z(); double p(); double [o]y(); double [o]e()) Carlsons symmetric basis of functions RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
AUTHOR
This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it>, 2002 Christian Soeller. All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation under certain conditions. For details, see the file COPYING in the PDL distribution. If this file is separated from the PDL distribution, the copyright notice should be included in the file. The GSL SF modules were written by G. Jungman. perl v5.8.0 2003-01-29 ELLINT(3)
Related Man Pages
pdl::gslsf::airy(3) - redhat
pdl::gslsf::gamma(3) - redhat
pdl::gslsf::hyperg(3) - redhat
pdl::gslsf::trig(3pm) - debian
pdl::gslsf::expint(3pm) - debian
Similar Topics in the Unix Linux Community
Skintimate New Signature Scents Shave Gel - Try All 5!
Marc Adler: Analytics are an Integral Part of the CEP Stack
Removal of comma(,) present inbetween double quotes(&quot; &quot;)
Dereferencing pointer to incomplete type
Rules with using double parentheses in Bash