Query: perlipc
OS: osx
Section: 1
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
PERLIPC(1) Perl Programmers Reference Guide PERLIPC(1)NAMEperlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and semaphores)DESCRIPTIONThe basic IPC facilities of Perl are built out of the good old Unix signals, named pipes, pipe opens, the Berkeley socket routines, and SysV IPC calls. Each is used in slightly different situations. Signals Perl uses a simple signal handling model: the %SIG hash contains names or references of user-installed signal handlers. These handlers will be called with an argument which is the name of the signal that triggered it. A signal may be generated intentionally from a particular keyboard sequence like control-C or control-Z, sent to you from another process, or triggered automatically by the kernel when special events transpire, like a child process exiting, your own process running out of stack space, or hitting a process file-size limit. For example, to trap an interrupt signal, set up a handler like this: our $shucks; sub catch_zap { my $signame = shift; $shucks++; die "Somebody sent me a SIG$signame"; } $SIG{INT} = __PACKAGE__ . "::catch_zap"; $SIG{INT} = &catch_zap; # best strategy Prior to Perl 5.7.3 it was necessary to do as little as you possibly could in your handler; notice how all we do is set a global variable and then raise an exception. That's because on most systems, libraries are not re-entrant; particularly, memory allocation and I/O routines are not. That meant that doing nearly anything in your handler could in theory trigger a memory fault and subsequent core dump - see "Deferred Signals (Safe Signals)" below. The names of the signals are the ones listed out by "kill -l" on your system, or you can retrieve them using the CPAN module IPC::Signal. You may also choose to assign the strings "IGNORE" or "DEFAULT" as the handler, in which case Perl will try to discard the signal or do the default thing. On most Unix platforms, the "CHLD" (sometimes also known as "CLD") signal has special behavior with respect to a value of "IGNORE". Setting $SIG{CHLD} to "IGNORE" on such a platform has the effect of not creating zombie processes when the parent process fails to "wait()" on its child processes (i.e., child processes are automatically reaped). Calling "wait()" with $SIG{CHLD} set to "IGNORE" usually returns "-1" on such platforms. Some signals can be neither trapped nor ignored, such as the KILL and STOP (but not the TSTP) signals. Note that ignoring signals makes them disappear. If you only want them blocked temporarily without them getting lost you'll have to use POSIX' sigprocmask. Sending a signal to a negative process ID means that you send the signal to the entire Unix process group. This code sends a hang-up signal to all processes in the current process group, and also sets $SIG{HUP} to "IGNORE" so it doesn't kill itself: # block scope for local { local $SIG{HUP} = "IGNORE"; kill HUP => -$$; # snazzy writing of: kill("HUP", -$$) } Another interesting signal to send is signal number zero. This doesn't actually affect a child process, but instead checks whether it's alive or has changed its UIDs. unless (kill 0 => $kid_pid) { warn "something wicked happened to $kid_pid"; } Signal number zero may fail because you lack permission to send the signal when directed at a process whose real or saved UID is not identical to the real or effective UID of the sending process, even though the process is alive. You may be able to determine the cause of failure using $! or "%!". unless (kill(0 => $pid) || $!{EPERM}) { warn "$pid looks dead"; } You might also want to employ anonymous functions for simple signal handlers: $SIG{INT} = sub { die " Outta here! " }; SIGCHLD handlers require some special care. If a second child dies while in the signal handler caused by the first death, we won't get another signal. So must loop here else we will leave the unreaped child as a zombie. And the next time two children die we get another zombie. And so on. use POSIX ":sys_wait_h"; $SIG{CHLD} = sub { while ((my $child = waitpid(-1, WNOHANG)) > 0) { $Kid_Status{$child} = $?; } }; # do something that forks... Be careful: qx(), system(), and some modules for calling external commands do a fork(), then wait() for the result. Thus, your signal handler will be called. Because wait() was already called by system() or qx(), the wait() in the signal handler will see no more zombies and will therefore block. The best way to prevent this issue is to use waitpid(), as in the following example: use POSIX ":sys_wait_h"; # for nonblocking read my %children; $SIG{CHLD} = sub { # don't change $! and $? outside handler local ($!, $?); my $pid = waitpid(-1, WNOHANG); return if $pid == -1; return unless defined $children{$pid}; delete $children{$pid}; cleanup_child($pid, $?); }; while(1) { my $pid = fork(); die "cannot fork" unless defined $pid; if ($pid == 0) { # ... exit 0; } else { $children{$pid}=1; # ... system($command); # ... } } Signal handling is also used for timeouts in Unix. While safely protected within an "eval{}" block, you set a signal handler to trap alarm signals and then schedule to have one delivered to you in some number of seconds. Then try your blocking operation, clearing the alarm when it's done but not before you've exited your "eval{}" block. If it goes off, you'll use die() to jump out of the block. Here's an example: my $ALARM_EXCEPTION = "alarm clock restart"; eval { local $SIG{ALRM} = sub { die $ALARM_EXCEPTION }; alarm 10; flock(FH, 2) # blocking write lock || die "cannot flock: $!"; alarm 0; }; if ($@ && $@ !~ quotemeta($ALARM_EXCEPTION)) { die } If the operation being timed out is system() or qx(), this technique is liable to generate zombies. If this matters to you, you'll need to do your own fork() and exec(), and kill the errant child process. For more complex signal handling, you might see the standard POSIX module. Lamentably, this is almost entirely undocumented, but the t/lib/posix.t file from the Perl source distribution has some examples in it. Handling the SIGHUP Signal in Daemons A process that usually starts when the system boots and shuts down when the system is shut down is called a daemon (Disk And Execution MONitor). If a daemon process has a configuration file which is modified after the process has been started, there should be a way to tell that process to reread its configuration file without stopping the process. Many daemons provide this mechanism using a "SIGHUP" signal handler. When you want to tell the daemon to reread the file, simply send it the "SIGHUP" signal. The following example implements a simple daemon, which restarts itself every time the "SIGHUP" signal is received. The actual code is located in the subroutine "code()", which just prints some debugging info to show that it works; it should be replaced with the real code. #!/usr/bin/perl -w use POSIX (); use FindBin (); use File::Basename (); use File::Spec::Functions; $| = 1; # make the daemon cross-platform, so exec always calls the script # itself with the right path, no matter how the script was invoked. my $script = File::Basename::basename($0); my $SELF = catfile($FindBin::Bin, $script); # POSIX unmasks the sigprocmask properly $SIG{HUP} = sub { print "got SIGHUP "; exec($SELF, @ARGV) || die "$0: couldn't restart: $!"; }; code(); sub code { print "PID: $$ "; print "ARGV: @ARGV "; my $count = 0; while (++$count) { sleep 2; print "$count "; } } Deferred Signals (Safe Signals) Before Perl 5.7.3, installing Perl code to deal with signals exposed you to danger from two things. First, few system library functions are re-entrant. If the signal interrupts while Perl is executing one function (like malloc(3) or printf(3)), and your signal handler then calls the same function again, you could get unpredictable behavior--often, a core dump. Second, Perl isn't itself re-entrant at the lowest levels. If the signal interrupts Perl while Perl is changing its own internal data structures, similarly unpredictable behavior may result. There were two things you could do, knowing this: be paranoid or be pragmatic. The paranoid approach was to do as little as possible in your signal handler. Set an existing integer variable that already has a value, and return. This doesn't help you if you're in a slow system call, which will just restart. That means you have to "die" to longjmp(3) out of the handler. Even this is a little cavalier for the true paranoiac, who avoids "die" in a handler because the system is out to get you. The pragmatic approach was to say "I know the risks, but prefer the convenience", and to do anything you wanted in your signal handler, and be prepared to clean up core dumps now and again. Perl 5.7.3 and later avoid these problems by "deferring" signals. That is, when the signal is delivered to the process by the system (to the C code that implements Perl) a flag is set, and the handler returns immediately. Then at strategic "safe" points in the Perl interpreter (e.g. when it is about to execute a new opcode) the flags are checked and the Perl level handler from %SIG is executed. The "deferred" scheme allows much more flexibility in the coding of signal handlers as we know the Perl interpreter is in a safe state, and that we are not in a system library function when the handler is called. However the implementation does differ from previous Perls in the following ways: Long-running opcodes As the Perl interpreter looks at signal flags only when it is about to execute a new opcode, a signal that arrives during a long- running opcode (e.g. a regular expression operation on a very large string) will not be seen until the current opcode completes. If a signal of any given type fires multiple times during an opcode (such as from a fine-grained timer), the handler for that signal will be called only once, after the opcode completes; all other instances will be discarded. Furthermore, if your system's signal queue gets flooded to the point that there are signals that have been raised but not yet caught (and thus not deferred) at the time an opcode completes, those signals may well be caught and deferred during subsequent opcodes, with sometimes surprising results. For example, you may see alarms delivered even after calling alarm(0) as the latter stops the raising of alarms but does not cancel the delivery of alarms raised but not yet caught. Do not depend on the behaviors described in this paragraph as they are side effects of the current implementation and may change in future versions of Perl. Interrupting IO When a signal is delivered (e.g., SIGINT from a control-C) the operating system breaks into IO operations like read(2), which is used to implement Perl's readline() function, the "<>" operator. On older Perls the handler was called immediately (and as "read" is not "unsafe", this worked well). With the "deferred" scheme the handler is not called immediately, and if Perl is using the system's "stdio" library that library may restart the "read" without returning to Perl to give it a chance to call the %SIG handler. If this happens on your system the solution is to use the ":perlio" layer to do IO--at least on those handles that you want to be able to break into with signals. (The ":perlio" layer checks the signal flags and calls %SIG handlers before resuming IO operation.) The default in Perl 5.7.3 and later is to automatically use the ":perlio" layer. Note that it is not advisable to access a file handle within a signal handler where that signal has interrupted an I/O operation on that same handle. While perl will at least try hard not to crash, there are no guarantees of data integrity; for example, some data might get dropped or written twice. Some networking library functions like gethostbyname() are known to have their own implementations of timeouts which may conflict with your timeouts. If you have problems with such functions, try using the POSIX sigaction() function, which bypasses Perl safe signals. Be warned that this does subject you to possible memory corruption, as described above. Instead of setting $SIG{ALRM}: local $SIG{ALRM} = sub { die "alarm" }; try something like the following: use POSIX qw(SIGALRM); POSIX::sigaction(SIGALRM, POSIX::SigAction->new(sub { die "alarm" })) || die "Error setting SIGALRM handler: $! "; Another way to disable the safe signal behavior locally is to use the "Perl::Unsafe::Signals" module from CPAN, which affects all signals. Restartable system calls On systems that supported it, older versions of Perl used the SA_RESTART flag when installing %SIG handlers. This meant that restartable system calls would continue rather than returning when a signal arrived. In order to deliver deferred signals promptly, Perl 5.7.3 and later do not use SA_RESTART. Consequently, restartable system calls can fail (with $! set to "EINTR") in places where they previously would have succeeded. The default ":perlio" layer retries "read", "write" and "close" as described above; interrupted "wait" and "waitpid" calls will always be retried. Signals as "faults" Certain signals like SEGV, ILL, and BUS are generated by virtual memory addressing errors and similar "faults". These are normally fatal: there is little a Perl-level handler can do with them. So Perl delivers them immediately rather than attempting to defer them. Signals triggered by operating system state On some operating systems certain signal handlers are supposed to "do something" before returning. One example can be CHLD or CLD, which indicates a child process has completed. On some operating systems the signal handler is expected to "wait" for the completed child process. On such systems the deferred signal scheme will not work for those signals: it does not do the "wait". Again the failure will look like a loop as the operating system will reissue the signal because there are completed child processes that have not yet been "wait"ed for. If you want the old signal behavior back despite possible memory corruption, set the environment variable "PERL_SIGNALS" to "unsafe". This feature first appeared in Perl 5.8.1. Named Pipes A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes communicating on the same machine. It works just like regular anonymous pipes, except that the processes rendezvous using a filename and need not be related. To create a named pipe, use the "POSIX::mkfifo()" function. use POSIX qw(mkfifo); mkfifo($path, 0700) || die "mkfifo $path failed: $!"; You can also use the Unix command mknod(1), or on some systems, mkfifo(1). These may not be in your normal path, though. # system return val is backwards, so && not || # $ENV{PATH} .= ":/etc:/usr/etc"; if ( system("mknod", $path, "p") && system("mkfifo", $path) ) { die "mk{nod,fifo} $path failed"; } A fifo is convenient when you want to connect a process to an unrelated one. When you open a fifo, the program will block until there's something on the other end. For example, let's say you'd like to have your .signature file be a named pipe that has a Perl program on the other end. Now every time any program (like a mailer, news reader, finger program, etc.) tries to read from that file, the reading program will read the new signature from your program. We'll use the pipe-checking file-test operator, -p, to find out whether anyone (or anything) has accidentally removed our fifo. chdir(); # go home my $FIFO = ".signature"; while(1) { unless (-p $FIFO) { unlink $FIFO; # discard any failure, will catch later require POSIX; # delayed loading of heavy module POSIX::mkfifo($FIFO, 0700) || die "can't mkfifo $FIFO: $!"; } # next line blocks till there's a reader open (FIFO, "> $FIFO") || die "can't open $FIFO: $!"; print FIFO "John Smith (smith@host.org) ", `fortune -s`; close(FIFO) || die "can't close $FIFO: $!"; sleep 2; # to avoid dup signals } Using open() for IPC Perl's basic open() statement can also be used for unidirectional interprocess communication by either appending or prepending a pipe symbol to the second argument to open(). Here's how to start something up in a child process you intend to write to: open(SPOOLER, "| cat -v | lpr -h 2>/dev/null") || die "can't fork: $!"; local $SIG{PIPE} = sub { die "spooler pipe broke" }; print SPOOLER "stuff "; close SPOOLER || die "bad spool: $! $?"; And here's how to start up a child process you intend to read from: open(STATUS, "netstat -an 2>&1 |") || die "can't fork: $!"; while (<STATUS>) { next if /^(tcp|udp)/; print; } close STATUS || die "bad netstat: $! $?"; If one can be sure that a particular program is a Perl script expecting filenames in @ARGV, the clever programmer can write something like this: % program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile and no matter which sort of shell it's called from, the Perl program will read from the file f1, the process cmd1, standard input (tmpfile in this case), the f2 file, the cmd2 command, and finally the f3 file. Pretty nifty, eh? You might notice that you could use backticks for much the same effect as opening a pipe for reading: print grep { !/^(tcp|udp)/ } `netstat -an 2>&1`; die "bad netstatus ($?)" if $?; While this is true on the surface, it's much more efficient to process the file one line or record at a time because then you don't have to read the whole thing into memory at once. It also gives you finer control of the whole process, letting you kill off the child process early if you'd like. Be careful to check the return values from both open() and close(). If you're writing to a pipe, you should also trap SIGPIPE. Otherwise, think of what happens when you start up a pipe to a command that doesn't exist: the open() will in all likelihood succeed (it only reflects the fork()'s success), but then your output will fail--spectacularly. Perl can't know whether the command worked, because your command is actually running in a separate process whose exec() might have failed. Therefore, while readers of bogus commands return just a quick EOF, writers to bogus commands will get hit with a signal, which they'd best be prepared to handle. Consider: open(FH, "|bogus") || die "can't fork: $!"; print FH "bang "; # neither necessary nor sufficient # to check print retval! close(FH) || die "can't close: $!"; The reason for not checking the return value from print() is because of pipe buffering; physical writes are delayed. That won't blow up until the close, and it will blow up with a SIGPIPE. To catch it, you could use this: $SIG{PIPE} = "IGNORE"; open(FH, "|bogus") || die "can't fork: $!"; print FH "bang "; close(FH) || die "can't close: status=$?"; Filehandles Both the main process and any child processes it forks share the same STDIN, STDOUT, and STDERR filehandles. If both processes try to access them at once, strange things can happen. You may also want to close or reopen the filehandles for the child. You can get around this by opening your pipe with open(), but on some systems this means that the child process cannot outlive the parent. Background Processes You can run a command in the background with: system("cmd &"); The command's STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the same as the parent's. You won't need to catch SIGCHLD because of the double-fork taking place; see below for details. Complete Dissociation of Child from Parent In some cases (starting server processes, for instance) you'll want to completely dissociate the child process from the parent. This is often called daemonization. A well-behaved daemon will also chdir() to the root directory so it doesn't prevent unmounting the filesystem containing the directory from which it was launched, and redirect its standard file descriptors from and to /dev/null so that random output doesn't wind up on the user's terminal. use POSIX "setsid"; sub daemonize { chdir("/") || die "can't chdir to /: $!"; open(STDIN, "< /dev/null") || die "can't read /dev/null: $!"; open(STDOUT, "> /dev/null") || die "can't write to /dev/null: $!"; defined(my $pid = fork()) || die "can't fork: $!"; exit if $pid; # non-zero now means I am the parent (setsid() != -1) || die "Can't start a new session: $!" open(STDERR, ">&STDOUT") || die "can't dup stdout: $!"; } The fork() has to come before the setsid() to ensure you aren't a process group leader; the setsid() will fail if you are. If your system doesn't have the setsid() function, open /dev/tty and use the "TIOCNOTTY" ioctl() on it instead. See tty(4) for details. Non-Unix users should check their "Your_OS::Process" module for other possible solutions. Safe Pipe Opens Another interesting approach to IPC is making your single program go multiprocess and communicate between--or even amongst--yourselves. The open() function will accept a file argument of either "-|" or "|-" to do a very interesting thing: it forks a child connected to the filehandle you've opened. The child is running the same program as the parent. This is useful for safely opening a file when running under an assumed UID or GID, for example. If you open a pipe to minus, you can write to the filehandle you opened and your kid will find it in his STDIN. If you open a pipe from minus, you can read from the filehandle you opened whatever your kid writes to his STDOUT. use English qw[ -no_match_vars ]; my $PRECIOUS = "/path/to/some/safe/file"; my $sleep_count; my $pid; do { $pid = open(KID_TO_WRITE, "|-"); unless (defined $pid) { warn "cannot fork: $!"; die "bailing out" if $sleep_count++ > 6; sleep 10; } } until defined $pid; if ($pid) { # I am the parent print KID_TO_WRITE @some_data; close(KID_TO_WRITE) || warn "kid exited $?"; } else { # I am the child # drop permissions in setuid and/or setgid programs: ($EUID, $EGID) = ($UID, $GID); open (OUTFILE, "> $PRECIOUS") || die "can't open $PRECIOUS: $!"; while (<STDIN>) { print OUTFILE; # child's STDIN is parent's KID_TO_WRITE } close(OUTFILE) || die "can't close $PRECIOUS: $!"; exit(0); # don't forget this!! } Another common use for this construct is when you need to execute something without the shell's interference. With system(), it's straightforward, but you can't use a pipe open or backticks safely. That's because there's no way to stop the shell from getting its hands on your arguments. Instead, use lower-level control to call exec() directly. Here's a safe backtick or pipe open for read: my $pid = open(KID_TO_READ, "-|"); defined($pid) || die "can't fork: $!"; if ($pid) { # parent while (<KID_TO_READ>) { # do something interesting } close(KID_TO_READ) || warn "kid exited $?"; } else { # child ($EUID, $EGID) = ($UID, $GID); # suid only exec($program, @options, @args) || die "can't exec program: $!"; # NOTREACHED } And here's a safe pipe open for writing: my $pid = open(KID_TO_WRITE, "|-"); defined($pid) || die "can't fork: $!"; $SIG{PIPE} = sub { die "whoops, $program pipe broke" }; if ($pid) { # parent print KID_TO_WRITE @data; close(KID_TO_WRITE) || warn "kid exited $?"; } else { # child ($EUID, $EGID) = ($UID, $GID); exec($program, @options, @args) || die "can't exec program: $!"; # NOTREACHED } It is very easy to dead-lock a process using this form of open(), or indeed with any use of pipe() with multiple subprocesses. The example above is "safe" because it is simple and calls exec(). See "Avoiding Pipe Deadlocks" for general safety principles, but there are extra gotchas with Safe Pipe Opens. In particular, if you opened the pipe using "open FH, "|-"", then you cannot simply use close() in the parent process to close an unwanted writer. Consider this code: my $pid = open(WRITER, "|-"); # fork open a kid defined($pid) || die "first fork failed: $!"; if ($pid) { if (my $sub_pid = fork()) { defined($sub_pid) || die "second fork failed: $!"; close(WRITER) || die "couldn't close WRITER: $!"; # now do something else... } else { # first write to WRITER # ... # then when finished close(WRITER) || die "couldn't close WRITER: $!"; exit(0); } } else { # first do something with STDIN, then exit(0); } In the example above, the true parent does not want to write to the WRITER filehandle, so it closes it. However, because WRITER was opened using "open FH, "|-"", it has a special behavior: closing it calls waitpid() (see "waitpid" in perlfunc), which waits for the subprocess to exit. If the child process ends up waiting for something happening in the section marked "do something else", you have deadlock. This can also be a problem with intermediate subprocesses in more complicated code, which will call waitpid() on all open filehandles during global destruction--in no predictable order. To solve this, you must manually use pipe(), fork(), and the form of open() which sets one file descriptor to another, as shown below: pipe(READER, WRITER) || die "pipe failed: $!"; $pid = fork(); defined($pid) || die "first fork failed: $!"; if ($pid) { close READER; if (my $sub_pid = fork()) { defined($sub_pid) || die "first fork failed: $!"; close(WRITER) || die "can't close WRITER: $!"; } else { # write to WRITER... # ... # then when finished close(WRITER) || die "can't close WRITER: $!"; exit(0); } # write to WRITER... } else { open(STDIN, "<&READER") || die "can't reopen STDIN: $!"; close(WRITER) || die "can't close WRITER: $!"; # do something... exit(0); } Since Perl 5.8.0, you can also use the list form of "open" for pipes. This is preferred when you wish to avoid having the shell interpret metacharacters that may be in your command string. So for example, instead of using: open(PS_PIPE, "ps aux|") || die "can't open ps pipe: $!"; One would use either of these: open(PS_PIPE, "-|", "ps", "aux") || die "can't open ps pipe: $!"; @ps_args = qw[ ps aux ]; open(PS_PIPE, "-|", @ps_args) || die "can't open @ps_args|: $!"; Because there are more than three arguments to open(), forks the ps(1) command without spawning a shell, and reads its standard output via the "PS_PIPE" filehandle. The corresponding syntax to write to command pipes is to use "|-" in place of "-|". This was admittedly a rather silly example, because you're using string literals whose content is perfectly safe. There is therefore no cause to resort to the harder-to-read, multi-argument form of pipe open(). However, whenever you cannot be assured that the program arguments are free of shell metacharacters, the fancier form of open() should be used. For example: @grep_args = ("egrep", "-i", $some_pattern, @many_files); open(GREP_PIPE, "-|", @grep_args) || die "can't open @grep_args|: $!"; Here the multi-argument form of pipe open() is preferred because the pattern and indeed even the filenames themselves might hold metacharacters. Be aware that these operations are full Unix forks, which means they may not be correctly implemented on all alien systems. Additionally, these are not true multithreading. To learn more about threading, see the modules file mentioned below in the SEE ALSO section. Avoiding Pipe Deadlocks Whenever you have more than one subprocess, you must be careful that each closes whichever half of any pipes created for interprocess communication it is not using. This is because any child process reading from the pipe and expecting an EOF will never receive it, and therefore never exit. A single process closing a pipe is not enough to close it; the last process with the pipe open must close it for it to read EOF. Certain built-in Unix features help prevent this most of the time. For instance, filehandles have a "close on exec" flag, which is set en masse under control of the $^F variable. This is so any filehandles you didn't explicitly route to the STDIN, STDOUT or STDERR of a child program will be automatically closed. Always explicitly and immediately call close() on the writable end of any pipe, unless that process is actually writing to it. Even if you don't explicitly call close(), Perl will still close() all filehandles during global destruction. As previously discussed, if those filehandles have been opened with Safe Pipe Open, this will result in calling waitpid(), which may again deadlock. Bidirectional Communication with Another Process While this works reasonably well for unidirectional communication, what about bidirectional communication? The most obvious approach doesn't work: # THIS DOES NOT WORK!! open(PROG_FOR_READING_AND_WRITING, "| some program |") If you forget to "use warnings", you'll miss out entirely on the helpful diagnostic message: Can't do bidirectional pipe at -e line 1. If you really want to, you can use the standard open2() from the "IPC::Open2" module to catch both ends. There's also an open3() in "IPC::Open3" for tridirectional I/O so you can also catch your child's STDERR, but doing so would then require an awkward select() loop and wouldn't allow you to use normal Perl input operations. If you look at its source, you'll see that open2() uses low-level primitives like the pipe() and exec() syscalls to create all the connections. Although it might have been more efficient by using socketpair(), this would have been even less portable than it already is. The open2() and open3() functions are unlikely to work anywhere except on a Unix system, or at least one purporting POSIX compliance. Here's an example of using open2(): use FileHandle; use IPC::Open2; $pid = open2(*Reader, *Writer, "cat -un"); print Writer "stuff "; $got = <Reader>; The problem with this is that buffering is really going to ruin your day. Even though your "Writer" filehandle is auto-flushed so the process on the other end gets your data in a timely manner, you can't usually do anything to force that process to give its data to you in a similarly quick fashion. In this special case, we could actually so, because we gave cat a -u flag to make it unbuffered. But very few commands are designed to operate over pipes, so this seldom works unless you yourself wrote the program on the other end of the double- ended pipe. A solution to this is to use a library which uses pseudottys to make your program behave more reasonably. This way you don't have to have control over the source code of the program you're using. The "Expect" module from CPAN also addresses this kind of thing. This module requires two other modules from CPAN, "IO::Pty" and "IO::Stty". It sets up a pseudo terminal to interact with programs that insist on talking to the terminal device driver. If your system is supported, this may be your best bet. Bidirectional Communication with Yourself If you want, you may make low-level pipe() and fork() syscalls to stitch this together by hand. This example only talks to itself, but you could reopen the appropriate handles to STDIN and STDOUT and call other processes. (The following example lacks proper error checking.) #!/usr/bin/perl -w # pipe1 - bidirectional communication using two pipe pairs # designed for the socketpair-challenged use IO::Handle; # thousands of lines just for autoflush :-( pipe(PARENT_RDR, CHILD_WTR); # XXX: check failure? pipe(CHILD_RDR, PARENT_WTR); # XXX: check failure? CHILD_WTR->autoflush(1); PARENT_WTR->autoflush(1); if ($pid = fork()) { close PARENT_RDR; close PARENT_WTR; print CHILD_WTR "Parent Pid $$ is sending this "; chomp($line = <CHILD_RDR>); print "Parent Pid $$ just read this: '$line' "; close CHILD_RDR; close CHILD_WTR; waitpid($pid, 0); } else { die "cannot fork: $!" unless defined $pid; close CHILD_RDR; close CHILD_WTR; chomp($line = <PARENT_RDR>); print "Child Pid $$ just read this: '$line' "; print PARENT_WTR "Child Pid $$ is sending this "; close PARENT_RDR; close PARENT_WTR; exit(0); } But you don't actually have to make two pipe calls. If you have the socketpair() system call, it will do this all for you. #!/usr/bin/perl -w # pipe2 - bidirectional communication using socketpair # "the best ones always go both ways" use Socket; use IO::Handle; # thousands of lines just for autoflush :-( # We say AF_UNIX because although *_LOCAL is the # POSIX 1003.1g form of the constant, many machines # still don't have it. socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC) || die "socketpair: $!"; CHILD->autoflush(1); PARENT->autoflush(1); if ($pid = fork()) { close PARENT; print CHILD "Parent Pid $$ is sending this "; chomp($line = <CHILD>); print "Parent Pid $$ just read this: '$line' "; close CHILD; waitpid($pid, 0); } else { die "cannot fork: $!" unless defined $pid; close CHILD; chomp($line = <PARENT>); print "Child Pid $$ just read this: '$line' "; print PARENT "Child Pid $$ is sending this "; close PARENT; exit(0); } Sockets: Client/Server Communication While not entirely limited to Unix-derived operating systems (e.g., WinSock on PCs provides socket support, as do some VMS libraries), you might not have sockets on your system, in which case this section probably isn't going to do you much good. With sockets, you can do both virtual circuits like TCP streams and datagrams like UDP packets. You may be able to do even more depending on your system. The Perl functions for dealing with sockets have the same names as the corresponding system calls in C, but their arguments tend to differ for two reasons. First, Perl filehandles work differently than C file descriptors. Second, Perl already knows the length of its strings, so you don't need to pass that information. One of the major problems with ancient, antemillennial socket code in Perl was that it used hard-coded values for some of the constants, which severely hurt portability. If you ever see code that does anything like explicitly setting "$AF_INET = 2", you know you're in for big trouble. An immeasurably superior approach is to use the "Socket" module, which more reliably grants access to the various constants and functions you'll need. If you're not writing a server/client for an existing protocol like NNTP or SMTP, you should give some thought to how your server will know when the client has finished talking, and vice-versa. Most protocols are based on one-line messages and responses (so one party knows the other has finished when a " " is received) or multi-line messages and responses that end with a period on an empty line (" . " terminates a message/response). Internet Line Terminators The Internet line terminator is "