Query: csqrtf
OS: freebsd
Section: 3
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
CSQRT(3) BSD Library Functions Manual CSQRT(3)NAMEcsqrt, csqrtf, csqrtl -- complex square root functionsLIBRARYMath Library (libm, -lm)SYNOPSIS#include <complex.h> double complex csqrt(double complex z); float complex csqrtf(float complex z); long double complex csqrtl(long double complex z);DESCRIPTIONThe csqrt(), csqrtf(), and csqrtl() functions compute the square root of z in the complex plane, with a branch cut along the negative real axis. In other words, csqrt(), csqrtf(), and csqrtl() always return the square root whose real part is non-negative.RETURN VALUESThese functions return the requested square root. The square root of 0 is +0 +- 0, where the imaginary parts of the input and respective result have the same sign. For infinities and NaNs, the following rules apply, with the earlier rules having precedence: Input Result k + infinity*I infinity + infinity*I (for all k) -infinity + NaN*I NaN +- infinity*I infinity + NaN*I infinity + NaN*I k + NaN*I NaN + NaN*I NaN + k*I NaN + NaN*I -infinity + k*I +0 + infinity*I infinity + k*I infinity + 0*I For numbers with negative imaginary parts, the above special cases apply given the identity: csqrt(conj(z) = conj(sqrt(z)) Note that the sign of NaN is indeterminate. Also, if the real or imaginary part of the input is finite and an NaN is generated, an invalid exception will be thrown.SEE ALSOcabs(3), fenv(3), math(3)STANDARDSThe csqrt(), csqrtf(), and csqrtl() functions conform to ISO/IEC 9899:1999 (``ISO C99'').BUGSFor csqrt() and csqrtl(), inexact results are not always correctly rounded.BSDMarch 30, 2008 BSD
Related Man Pages |
---|
csqrt(3) - mojave |
csqrtf(3) - osx |
csqrtl(3m) - sunos |
csqrtl(3m) - opensolaris |
csqrt(3) - freebsd |
Similar Topics in the Unix Linux Community |
---|
Gdadin 0.0.1 (Default branch) |
Negative Numbers for input parameters. |