Query: pdl::stats::distr
OS: debian
Section: 3pm
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
Distr(3pm) User Contributed Perl Documentation Distr(3pm)NAMEPDL::Stats::Distr -- parameter estimations and probability density functions for distributions.DESCRIPTIONParameter estimate is maximum likelihood estimate when there is closed form estimate, otherwise it is method of moments estimate.SYNOPSISuse PDL::LiteF; use PDL::Stats::Distr; # do a frequency (probability) plot with fitted normal curve my ($xvals, $hist) = $data->hist; # turn frequency into probability $hist /= $data->nelem; # get maximum likelihood estimates of normal curve parameters my ($m, $v) = $data->mle_gaussian(); # fitted normal curve probabilities my $p = $xvals->pdf_gaussian($m, $v); use PDL::Graphics::PGPLOT::Window; my $win = pgwin( Dev=>"/xs" ); $win->bin( $hist ); $win->hold; $win->line( $p, {COLOR=>2} ); $win->close; Or, play with different distributions with plot_distr :) $data->plot_distr( 'gaussian', 'lognormal' );FUNCTIONSmme_beta Signature: (a(n); float+ [o]alpha(); float+ [o]beta()) my ($a, $b) = $data->mme_beta(); beta distribution. pdf: f(x; a,b) = 1/B(a,b) x^(a-1) (1-x)^(b-1) mme_beta does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_beta Signature: (x(); a(); b(); float+ [o]p()) probability density function for beta distribution. x defined on [0,1]. pdf_beta does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mme_binomial Signature: (a(n); int [o]n_(); float+ [o]p()) my ($n, $p) = $data->mme_binomial; binomial distribution. pmf: f(k; n,p) = (n k) p^k (1-p)^(n-k) for k = 0,1,2..n mme_binomial does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pmf_binomial Signature: (ushort x(); ushort n(); p(); float+ [o]out()) probability mass function for binomial distribution. pmf_binomial does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_exp Signature: (a(n); float+ [o]l()) my $lamda = $data->mle_exp; exponential distribution. mle same as method of moments estimate. mle_exp does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_exp Signature: (x(); l(); float+ [o]p()) probability density function for exponential distribution. pdf_exp does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mme_gamma Signature: (a(n); float+ [o]shape(); float+ [o]scale()) my ($shape, $scale) = $data->mme_gamma(); two-parameter gamma distribution mme_gamma does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_gamma Signature: (x(); a(); t(); float+ [o]p()) probability density function for two-parameter gamma distribution. pdf_gamma does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_gaussian Signature: (a(n); float+ [o]m(); float+ [o]v()) my ($m, $v) = $data->mle_gaussian(); gaussian aka normal distribution. same results as $data->average and $data->var. mle same as method of moments estimate. mle_gaussian does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_gaussian Signature: (x(); m(); v(); float+ [o]p()) probability density function for gaussian distribution. pdf_gaussian does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_geo Signature: (a(n); float+ [o]p()) geometric distribution. mle same as method of moments estimate. mle_geo does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pmf_geo Signature: (ushort x(); p(); float+ [o]out()) probability mass function for geometric distribution. x >= 0. pmf_geo does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_geosh Signature: (a(n); float+ [o]p()) shifted geometric distribution. mle same as method of moments estimate. mle_geosh does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pmf_geosh Signature: (ushort x(); p(); float+ [o]out()) probability mass function for shifted geometric distribution. x >= 1. pmf_geosh does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_lognormal Signature: (a(n); float+ [o]m(); float+ [o]v()) my ($m, $v) = $data->mle_lognormal(); lognormal distribution. maximum likelihood estimation. mle_lognormal does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mme_lognormal Signature: (a(n); float+ [o]m(); float+ [o]v()) my ($m, $v) = $data->mme_lognormal(); lognormal distribution. method of moments estimation. mme_lognormal does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_lognormal Signature: (x(); m(); v(); float+ [o]p()) probability density function for lognormal distribution. x > 0. v > 0. pdf_lognormal does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mme_nbd Signature: (a(n); float+ [o]r(); float+ [o]p()) my ($r, $p) = $data->mme_nbd(); negative binomial distribution. pmf: f(x; r,p) = (x+r-1 r-1) p^r (1-p)^x for x=0,1,2... mme_nbd does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pmf_nbd Signature: (ushort x(); r(); p(); float+ [o]out()) probability mass function for negative binomial distribution. pmf_nbd does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mme_pareto Signature: (a(n); float+ [o]k(); float+ [o]xm()) my ($k, $xm) = $data->mme_pareto(); pareto distribution. pdf: f(x; k,xm) = k xm^k / x^(k+1) for x >= xm > 0. mme_pareto does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pdf_pareto Signature: (x(); k(); xm(); float+ [o]p()) probability density function for pareto distribution. x >= xm > 0. pdf_pareto does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. mle_poisson Signature: (a(n); float+ [o]l()) my $lamda = $data->mle_poisson(); poisson distribution. pmf: f(x;l) = e^(-l) * l^x / x! mle_poisson does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. pmf_poisson Signature: (ushort x(); l(); float+ [o]p()) probability mass function for poisson distribution. pmf_poisson does handle bad values. It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles. plot_distr Plots data distribution. When given specific distribution(s) to fit, returns % ref to sum log likelihood and parameter values under fitted distribution(s). See FUNCTIONS above for available distributions. Default options (case insensitive): MAXBN => 20, # see PDL::Graphics::PGPLOT::Window for next options WIN => undef, # pgwin object. not closed here if passed # allows comparing multiple distr in same plot # set env before passing WIN DEV => '/xs' , # open and close dev for plotting if no WIN # defaults to '/png' in Windows COLOR => 1, # color for data distr Usage: # yes it threads :) my $data = grandom( 500, 3 )->abs; # ll on plot is sum across 3 data curves my ($ll, $pars) = $data->plot_distr( 'gaussian', 'lognormal', {DEV=>'/png'} ); # pars are from normalized data (ie data / bin_size) print "$_ @{$pars->{$_}} " for (sort keys %$pars); print "$_ $ll->{$_} " for (sort keys %$ll);DEPENDENCIESGSL - GNU Scientific LibrarySEE ALSOPDL::Graphics::PGPLOT PDL::GSL::CDFAUTHORCopyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net> All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution. perl v5.14.2 2012-06-04 Distr(3pm)
Similar Topics in the Unix Linux Community |
---|
awk - calculation of probability density |