debian man page for slasr

Query: slasr

OS: debian

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

slasr.f(3)							      LAPACK								slasr.f(3)

NAME
slasr.f -
SYNOPSIS
Functions/Subroutines subroutine slasr (SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA) SLASR Function/Subroutine Documentation subroutine slasr (characterSIDE, characterPIVOT, characterDIRECT, integerM, integerN, real, dimension( * )C, real, dimension( * )S, real, dimension( lda, * )A, integerLDA) SLASR Purpose: SLASR applies a sequence of plane rotations to a real matrix A, from either the left or the right. When SIDE = 'L', the transformation takes the form A := P*A and when SIDE = 'R', the transformation takes the form A := A*P**T where P is an orthogonal matrix consisting of a sequence of z plane rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', and P**T is the transpose of P. When DIRECT = 'F' (Forward sequence), then P = P(z-1) * ... * P(2) * P(1) and when DIRECT = 'B' (Backward sequence), then P = P(1) * P(2) * ... * P(z-1) where P(k) is a plane rotation matrix defined by the 2-by-2 rotation R(k) = ( c(k) s(k) ) = ( -s(k) c(k) ). When PIVOT = 'V' (Variable pivot), the rotation is performed for the plane (k,k+1), i.e., P(k) has the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and k+1. When PIVOT = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k) has the form P(k) = ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears in rows and columns 1 and k+1. Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is performed for the plane (k,z), giving P(k) the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) where R(k) appears in rows and columns k and z. The rotations are performed without ever forming P(k) explicitly. Parameters: SIDE SIDE is CHARACTER*1 Specifies whether the plane rotation matrix P is applied to A on the left or the right. = 'L': Left, compute A := P*A = 'R': Right, compute A:= A*P**T PIVOT PIVOT is CHARACTER*1 Specifies the plane for which P(k) is a plane rotation matrix. = 'V': Variable pivot, the plane (k,k+1) = 'T': Top pivot, the plane (1,k+1) = 'B': Bottom pivot, the plane (k,z) DIRECT DIRECT is CHARACTER*1 Specifies whether P is a forward or backward sequence of plane rotations. = 'F': Forward, P = P(z-1)*...*P(2)*P(1) = 'B': Backward, P = P(1)*P(2)*...*P(z-1) M M is INTEGER The number of rows of the matrix A. If m <= 1, an immediate return is effected. N N is INTEGER The number of columns of the matrix A. If n <= 1, an immediate return is effected. C C is REAL array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The cosines c(k) of the plane rotations. S S is REAL array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The sines s(k) of the plane rotations. The 2-by-2 plane rotation part of the matrix P(k), R(k), has the form R(k) = ( c(k) s(k) ) ( -s(k) c(k) ). A A is REAL array, dimension (LDA,N) The M-by-N matrix A. On exit, A is overwritten by P*A if SIDE = 'R' or by A*P**T if SIDE = 'L'. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 200 of file slasr.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slasr.f(3)
Related Man Pages
slasr(3) - debian
dlasr.f(3) - debian
dlasr(3) - centos
zlasr(3) - centos
clasr.f(3) - centos
Similar Topics in the Unix Linux Community
homest 1.2 (Default branch)
Pivot file contents