Query: slaed5
OS: debian
Section: 3
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
slaed5.f(3) LAPACK slaed5.f(3)NAMEslaed5.f -SYNOPSISFunctions/Subroutines subroutine slaed5 (I, D, Z, DELTA, RHO, DLAM) SLAED5 Function/Subroutine Documentation subroutine slaed5 (integerI, real, dimension( 2 )D, real, dimension( 2 )Z, real, dimension( 2 )DELTA, realRHO, realDLAM) SLAED5 Purpose: This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) + RHO * Z * transpose(Z) . The diagonal elements in the array D are assumed to satisfy D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. Parameters: I I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D D is REAL array, dimension (2) The original eigenvalues. We assume D(1) < D(2). Z Z is REAL array, dimension (2) The components of the updating vector. DELTA DELTA is REAL array, dimension (2) The vector DELTA contains the information necessary to construct the eigenvectors. RHO RHO is REAL The scalar in the symmetric updating formula. DLAM DLAM is REAL The computed lambda_I, the I-th updated eigenvalue. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Contributors: Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Definition at line 109 of file slaed5.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 slaed5.f(3)