Query: slagv2
OS: centos
Section: 3
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
slagv2.f(3) LAPACK slagv2.f(3)NAMEslagv2.f -SYNOPSISFunctions/Subroutines subroutine slagv2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR) SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. Function/Subroutine Documentation subroutine slagv2 (real, dimension( lda, * )A, integerLDA, real, dimension( ldb, * )B, integerLDB, real, dimension( 2 )ALPHAR, real, dimension( 2 )ALPHAI, real, dimension( 2 )BETA, realCSL, realSNL, realCSR, realSNR) SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. Purpose: SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0. Parameters: A A is REAL array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA LDA is INTEGER THe leading dimension of the array A. LDA >= 2. B B is REAL array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB LDB is INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR ALPHAR is REAL array, dimension (2) ALPHAI ALPHAI is REAL array, dimension (2) BETA BETA is REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL CSL is REAL The cosine of the left rotation matrix. SNL SNL is REAL The sine of the left rotation matrix. CSR CSR is REAL The cosine of the right rotation matrix. SNR SNR is REAL The sine of the right rotation matrix. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA Definition at line 157 of file slagv2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 slagv2.f(3)
Related Man Pages |
---|
slasv2(l) - redhat |
dlagv2(3) - debian |
slasv2(3) - debian |
slagv2.f(3) - debian |
slasv2(3) - centos |
Similar Topics in the Unix Linux Community |
---|
Is UNIX an open source OS ? |
How to increment version inside a file? |
DB2 convert digits to binary format |
Docker learning Phase-I |
Shopt -s histappend |