centos man page for dsptrd

Query: dsptrd

OS: centos

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

dsptrd.f(3)							      LAPACK							       dsptrd.f(3)

NAME
dsptrd.f -
SYNOPSIS
Functions/Subroutines subroutine dsptrd (UPLO, N, AP, D, E, TAU, INFO) DSPTRD Function/Subroutine Documentation subroutine dsptrd (characterUPLO, integerN, double precision, dimension( * )AP, double precision, dimension( * )D, double precision, dimension( * )E, double precision, dimension( * )TAU, integerINFO) DSPTRD Purpose: DSPTRD reduces a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, if UPLO = 'U', the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. D D is DOUBLE PRECISION array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). E E is DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. TAU TAU is DOUBLE PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, overwriting A(1:i-1,i+1), and tau is stored in TAU(i). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, overwriting A(i+2:n,i), and tau is stored in TAU(i). Definition at line 151 of file dsptrd.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dsptrd.f(3)
Related Man Pages
zhptrd(3) - debian
zhptrd(3) - centos
chptrd.f(3) - centos
dsptrd.f(3) - centos
ssptrd.f(3) - centos
Similar Topics in the Unix Linux Community
Best performance UNIX just for HOST Virtualization?
DB2 convert digits to binary format
Docker learning Phase-I
Unsure why access time on a directory change isn't changing
[TIP] Processing YAML files with yq