rsync(1) rsync(1)
NAME
rsync - a fast, versatile, remote (and local) file-copying tool
SYNOPSIS
Local: rsync [OPTION...] SRC... [DEST]
Access via remote shell:
Pull: rsync [OPTION...] [USER@]HOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST
Access via rsync daemon:
Pull: rsync [OPTION...] [USER@]HOST::SRC... [DEST]
rsync [OPTION...] rsync://[USER@]HOST[:PORT]/SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST::DEST
rsync [OPTION...] SRC... rsync://[USER@]HOST[:PORT]/DEST
Usages with just one SRC arg and no DEST arg will list the source files instead of copying.
DESCRIPTION
Rsync is a fast and extraordinarily versatile file copying tool. It can copy locally, to/from another host over any remote shell, or
to/from a remote rsync daemon. It offers a large number of options that control every aspect of its behavior and permit very flexible
specification of the set of files to be copied. It is famous for its delta-transfer algorithm, which reduces the amount of data sent over
the network by sending only the differences between the source files and the existing files in the destination. Rsync is widely used for
backups and mirroring and as an improved copy command for everyday use.
Rsync finds files that need to be transferred using a "quick check" algorithm (by default) that looks for files that have changed in size
or in last-modified time. Any changes in the other preserved attributes (as requested by options) are made on the destination file
directly when the quick check indicates that the file's data does not need to be updated.
Some of the additional features of rsync are:
o support for copying links, devices, owners, groups, and permissions
o exclude and exclude-from options similar to GNU tar
o a CVS exclude mode for ignoring the same files that CVS would ignore
o can use any transparent remote shell, including ssh or rsh
o does not require super-user privileges
o pipelining of file transfers to minimize latency costs
o support for anonymous or authenticated rsync daemons (ideal for mirroring)
GENERAL
Rsync copies files either to or from a remote host, or locally on the current host (it does not support copying files between two remote
hosts).
There are two different ways for rsync to contact a remote system: using a remote-shell program as the transport (such as ssh or rsh) or
contacting an rsync daemon directly via TCP. The remote-shell transport is used whenever the source or destination path contains a single
colon (:) separator after a host specification. Contacting an rsync daemon directly happens when the source or destination path contains a
double colon (::) separator after a host specification, OR when an rsync:// URL is specified (see also the "USING RSYNC-DAEMON FEATURES VIA
A REMOTE-SHELL CONNECTION" section for an exception to this latter rule).
As a special case, if a single source arg is specified without a destination, the files are listed in an output format similar to "ls -l".
As expected, if neither the source or destination path specify a remote host, the copy occurs locally (see also the --list-only option).
Rsync refers to the local side as the "client" and the remote side as the "server". Don't confuse "server" with an rsync daemon -- a dae-
mon is always a server, but a server can be either a daemon or a remote-shell spawned process.
SETUP
See the file README for installation instructions.
Once installed, you can use rsync to any machine that you can access via a remote shell (as well as some that you can access using the
rsync daemon-mode protocol). For remote transfers, a modern rsync uses ssh for its communications, but it may have been configured to use
a different remote shell by default, such as rsh or remsh.
You can also specify any remote shell you like, either by using the -e command line option, or by setting the RSYNC_RSH environment vari-
able.
Note that rsync must be installed on both the source and destination machines.
USAGE
You use rsync in the same way you use rcp. You must specify a source and a destination, one of which may be remote.
Perhaps the best way to explain the syntax is with some examples:
rsync -t *.c foo:src/
This would transfer all files matching the pattern *.c from the current directory to the directory src on the machine foo. If any of the
files already exist on the remote system then the rsync remote-update protocol is used to update the file by sending only the differences
in the data. Note that the expansion of wildcards on the commandline (*.c) into a list of files is handled by the shell before it runs
rsync and not by rsync itself (exactly the same as all other posix-style programs).
rsync -avz foo:src/bar /data/tmp
This would recursively transfer all files from the directory src/bar on the machine foo into the /data/tmp/bar directory on the local
machine. The files are transferred in "archive" mode, which ensures that symbolic links, devices, attributes, permissions, ownerships, etc.
are preserved in the transfer. Additionally, compression will be used to reduce the size of data portions of the transfer.
rsync -avz foo:src/bar/ /data/tmp
A trailing slash on the source changes this behavior to avoid creating an additional directory level at the destination. You can think of
a trailing / on a source as meaning "copy the contents of this directory" as opposed to "copy the directory by name", but in both cases the
attributes of the containing directory are transferred to the containing directory on the destination. In other words, each of the follow-
ing commands copies the files in the same way, including their setting of the attributes of /dest/foo:
rsync -av /src/foo /dest
rsync -av /src/foo/ /dest/foo
Note also that host and module references don't require a trailing slash to copy the contents of the default directory. For example, both
of these copy the remote directory's contents into "/dest":
rsync -av host: /dest
rsync -av host::module /dest
You can also use rsync in local-only mode, where both the source and destination don't have a ':' in the name. In this case it behaves like
an improved copy command.
Finally, you can list all the (listable) modules available from a particular rsync daemon by leaving off the module name:
rsync somehost.mydomain.com::
See the following section for more details.
ADVANCED USAGE
The syntax for requesting multiple files from a remote host is done by specifying additional remote-host args in the same style as the
first, or with the hostname omitted. For instance, all these work:
rsync -av host:file1 :file2 host:file{3,4} /dest/
rsync -av host::modname/file{1,2} host::modname/file3 /dest/
rsync -av host::modname/file1 ::modname/file{3,4}
Older versions of rsync required using quoted spaces in the SRC, like these examples:
rsync -av host:'dir1/file1 dir2/file2' /dest
rsync host::'modname/dir1/file1 modname/dir2/file2' /dest
This word-splitting still works (by default) in the latest rsync, but is not as easy to use as the first method.
If you need to transfer a filename that contains whitespace, you can either specify the --protect-args (-s) option, or you'll need to
escape the whitespace in a way that the remote shell will understand. For instance:
rsync -av host:'file name with spaces' /dest
CONNECTING TO AN RSYNC DAEMON
It is also possible to use rsync without a remote shell as the transport. In this case you will directly connect to a remote rsync daemon,
typically using TCP port 873. (This obviously requires the daemon to be running on the remote system, so refer to the STARTING AN RSYNC
DAEMON TO ACCEPT CONNECTIONS section below for information on that.)
Using rsync in this way is the same as using it with a remote shell except that:
o you either use a double colon :: instead of a single colon to separate the hostname from the path, or you use an rsync:// URL.
o the first word of the "path" is actually a module name.
o the remote daemon may print a message of the day when you connect.
o if you specify no path name on the remote daemon then the list of accessible paths on the daemon will be shown.
o if you specify no local destination then a listing of the specified files on the remote daemon is provided.
o you must not specify the --rsh (-e) option.
An example that copies all the files in a remote module named "src":
rsync -av host::src /dest
Some modules on the remote daemon may require authentication. If so, you will receive a password prompt when you connect. You can avoid the
password prompt by setting the environment variable RSYNC_PASSWORD to the password you want to use or using the --password-file option.
This may be useful when scripting rsync.
WARNING: On some systems environment variables are visible to all users. On those systems using --password-file is recommended.
You may establish the connection via a web proxy by setting the environment variable RSYNC_PROXY to a hostname:port pair pointing to your
web proxy. Note that your web proxy's configuration must support proxy connections to port 873.
You may also establish a daemon connection using a program as a proxy by setting the environment variable RSYNC_CONNECT_PROG to the com-
mands you wish to run in place of making a direct socket connection. The string may contain the escape "%H" to represent the hostname
specified in the rsync command (so use "%%" if you need a single "%" in your string). For example:
export RSYNC_CONNECT_PROG='ssh proxyhost nc %H 873'
rsync -av targethost1::module/src/ /dest/
rsync -av rsync:://targethost2/module/src/ /dest/
The command specified above uses ssh to run nc (netcat) on a proxyhost, which forwards all data to port 873 (the rsync daemon) on the tar-
gethost (%H).
USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION
It is sometimes useful to use various features of an rsync daemon (such as named modules) without actually allowing any new socket connec-
tions into a system (other than what is already required to allow remote-shell access). Rsync supports connecting to a host using a remote
shell and then spawning a single-use "daemon" server that expects to read its config file in the home dir of the remote user. This can be
useful if you want to encrypt a daemon-style transfer's data, but since the daemon is started up fresh by the remote user, you may not be
able to use features such as chroot or change the uid used by the daemon. (For another way to encrypt a daemon transfer, consider using
ssh to tunnel a local port to a remote machine and configure a normal rsync daemon on that remote host to only allow connections from
"localhost".)
From the user's perspective, a daemon transfer via a remote-shell connection uses nearly the same command-line syntax as a normal
rsync-daemon transfer, with the only exception being that you must explicitly set the remote shell program on the command-line with the
--rsh=COMMAND option. (Setting the RSYNC_RSH in the environment will not turn on this functionality.) For example:
rsync -av --rsh=ssh host::module /dest
If you need to specify a different remote-shell user, keep in mind that the user@ prefix in front of the host is specifying the rsync-user
value (for a module that requires user-based authentication). This means that you must give the '-l user' option to ssh when specifying
the remote-shell, as in this example that uses the short version of the --rsh option:
rsync -av -e "ssh -l ssh-user" rsync-user@host::module /dest
The "ssh-user" will be used at the ssh level; the "rsync-user" will be used to log-in to the "module".
STARTING AN RSYNC DAEMON TO ACCEPT CONNECTIONS
In order to connect to an rsync daemon, the remote system needs to have a daemon already running (or it needs to have configured something
like inetd to spawn an rsync daemon for incoming connections on a particular port). For full information on how to start a daemon that
will handling incoming socket connections, see the rsyncd.conf(5) man page -- that is the config file for the daemon, and it contains the
full details for how to run the daemon (including stand-alone and inetd configurations).
If you're using one of the remote-shell transports for the transfer, there is no need to manually start an rsync daemon.
SORTED TRANSFER ORDER
Rsync always sorts the specified filenames into its internal transfer list. This handles the merging together of the contents of identi-
cally named directories, makes it easy to remove duplicate filenames, and may confuse someone when the files are transferred in a different
order than what was given on the command-line.
If you need a particular file to be transferred prior to another, either separate the files into different rsync calls, or consider using
--delay-updates (which doesn't affect the sorted transfer order, but does make the final file-updating phase happen much more rapidly).
EXAMPLES
Here are some examples of how I use rsync.
To backup my wife's home directory, which consists of large MS Word files and mail folders, I use a cron job that runs
rsync -Cavz . arvidsjaur:backup
each night over a PPP connection to a duplicate directory on my machine "arvidsjaur".
To synchronize my samba source trees I use the following Makefile targets:
get:
rsync -avuzb --exclude '*~' samba:samba/ .
put:
rsync -Cavuzb . samba:samba/
sync: get put
this allows me to sync with a CVS directory at the other end of the connection. I then do CVS operations on the remote machine, which saves
a lot of time as the remote CVS protocol isn't very efficient.
I mirror a directory between my "old" and "new" ftp sites with the command:
rsync -az -e ssh --delete ~ftp/pub/samba nimbus:"~ftp/pub/tridge"
This is launched from cron every few hours.
OPTIONS SUMMARY
Here is a short summary of the options available in rsync. Please refer to the detailed description below for a complete description.
-v, --verbose increase verbosity
--info=FLAGS fine-grained informational verbosity
--debug=FLAGS fine-grained debug verbosity
--msgs2stderr special output handling for debugging
-q, --quiet suppress non-error messages
--no-motd suppress daemon-mode MOTD (see caveat)
-c, --checksum skip based on checksum, not mod-time & size
-a, --archive archive mode; equals -rlptgoD (no -H,-A,-X)
--no-OPTION turn off an implied OPTION (e.g. --no-D)
-r, --recursive recurse into directories
-R, --relative use relative path names
--no-implied-dirs don't send implied dirs with --relative
-b, --backup make backups (see --suffix & --backup-dir)
--backup-dir=DIR make backups into hierarchy based in DIR
--suffix=SUFFIX backup suffix (default ~ w/o --backup-dir)
-u, --update skip files that are newer on the receiver
--inplace update destination files in-place
--append append data onto shorter files
--append-verify --append w/old data in file checksum
-d, --dirs transfer directories without recursing
-l, --links copy symlinks as symlinks
-L, --copy-links transform symlink into referent file/dir
--copy-unsafe-links only "unsafe" symlinks are transformed
--safe-links ignore symlinks that point outside the tree
--munge-links munge symlinks to make them safer
-k, --copy-dirlinks transform symlink to dir into referent dir
-K, --keep-dirlinks treat symlinked dir on receiver as dir
-H, --hard-links preserve hard links
-p, --perms preserve permissions
-E, --executability preserve executability
--chmod=CHMOD affect file and/or directory permissions
-A, --acls preserve ACLs (implies -p)
-X, --xattrs preserve extended attributes
-o, --owner preserve owner (super-user only)
-g, --group preserve group
--devices preserve device files (super-user only)
--specials preserve special files
-D same as --devices --specials
-t, --times preserve modification times
-O, --omit-dir-times omit directories from --times
-J, --omit-link-times omit symlinks from --times
--super receiver attempts super-user activities
--fake-super store/recover privileged attrs using xattrs
-S, --sparse handle sparse files efficiently
--preallocate allocate dest files before writing
-n, --dry-run perform a trial run with no changes made
-W, --whole-file copy files whole (w/o delta-xfer algorithm)
-x, --one-file-system don't cross filesystem boundaries
-B, --block-size=SIZE force a fixed checksum block-size
-e, --rsh=COMMAND specify the remote shell to use
--rsync-path=PROGRAM specify the rsync to run on remote machine
--existing skip creating new files on receiver
--ignore-existing skip updating files that exist on receiver
--remove-source-files sender removes synchronized files (non-dir)
--del an alias for --delete-during
--delete delete extraneous files from dest dirs
--delete-before receiver deletes before xfer, not during
--delete-during receiver deletes during the transfer
--delete-delay find deletions during, delete after
--delete-after receiver deletes after transfer, not during
--delete-excluded also delete excluded files from dest dirs
--ignore-missing-args ignore missing source args without error
--delete-missing-args delete missing source args from destination
--ignore-errors delete even if there are I/O errors
--force force deletion of dirs even if not empty
--max-delete=NUM don't delete more than NUM files
--max-size=SIZE don't transfer any file larger than SIZE
--min-size=SIZE don't transfer any file smaller than SIZE
--partial keep partially transferred files
--partial-dir=DIR put a partially transferred file into DIR
--delay-updates put all updated files into place at end
-m, --prune-empty-dirs prune empty directory chains from file-list
--numeric-ids don't map uid/gid values by user/group name
--usermap=STRING custom username mapping
--groupmap=STRING custom groupname mapping
--chown=USER:GROUP simple username/groupname mapping
--timeout=SECONDS set I/O timeout in seconds
--contimeout=SECONDS set daemon connection timeout in seconds
-I, --ignore-times don't skip files that match size and time
--size-only skip files that match in size
--modify-window=NUM compare mod-times with reduced accuracy
-T, --temp-dir=DIR create temporary files in directory DIR
-y, --fuzzy find similar file for basis if no dest file
--compare-dest=DIR also compare received files relative to DIR
--copy-dest=DIR ... and include copies of unchanged files
--link-dest=DIR hardlink to files in DIR when unchanged
-z, --compress compress file data during the transfer
--compress-level=NUM explicitly set compression level
--skip-compress=LIST skip compressing files with suffix in LIST
-C, --cvs-exclude auto-ignore files in the same way CVS does
-f, --filter=RULE add a file-filtering RULE
-F same as --filter='dir-merge /.rsync-filter'
repeated: --filter='- .rsync-filter'
--exclude=PATTERN exclude files matching PATTERN
--exclude-from=FILE read exclude patterns from FILE
--include=PATTERN don't exclude files matching PATTERN
--include-from=FILE read include patterns from FILE
--files-from=FILE read list of source-file names from FILE
-0, --from0 all *from/filter files are delimited by 0s
-s, --protect-args no space-splitting; wildcard chars only
--address=ADDRESS bind address for outgoing socket to daemon
--port=PORT specify double-colon alternate port number
--sockopts=OPTIONS specify custom TCP options
--blocking-io use blocking I/O for the remote shell
--outbuf=N|L|B set out buffering to None, Line, or Block
--stats give some file-transfer stats
-8, --8-bit-output leave high-bit chars unescaped in output
-h, --human-readable output numbers in a human-readable format
--progress show progress during transfer
-P same as --partial --progress
-i, --itemize-changes output a change-summary for all updates
-M, --remote-option=OPTION send OPTION to the remote side only
--out-format=FORMAT output updates using the specified FORMAT
--log-file=FILE log what we're doing to the specified FILE
--log-file-format=FMT log updates using the specified FMT
--password-file=FILE read daemon-access password from FILE
--list-only list the files instead of copying them
--bwlimit=RATE limit socket I/O bandwidth
--stop-at=y-m-dTh:m Stop rsync at year-month-dayThour:minute
--time-limit=MINS Stop rsync after MINS minutes have elapsed
--write-batch=FILE write a batched update to FILE
--only-write-batch=FILE like --write-batch but w/o updating dest
--read-batch=FILE read a batched update from FILE
--protocol=NUM force an older protocol version to be used
--iconv=CONVERT_SPEC request charset conversion of filenames
--checksum-seed=NUM set block/file checksum seed (advanced)
-4, --ipv4 prefer IPv4
-6, --ipv6 prefer IPv6
--version print version number
(-h) --help show this help (see below for -h comment)
Rsync can also be run as a daemon, in which case the following options are accepted:
--daemon run as an rsync daemon
--address=ADDRESS bind to the specified address
--bwlimit=RATE limit socket I/O bandwidth
--config=FILE specify alternate rsyncd.conf file
-M, --dparam=OVERRIDE override global daemon config parameter
--no-detach do not detach from the parent
--port=PORT listen on alternate port number
--log-file=FILE override the "log file" setting
--log-file-format=FMT override the "log format" setting
--sockopts=OPTIONS specify custom TCP options
-v, --verbose increase verbosity
-4, --ipv4 prefer IPv4
-6, --ipv6 prefer IPv6
-h, --help show this help (if used after --daemon)
OPTIONS
Rsync accepts both long (double-dash + word) and short (single-dash + letter) options. The full list of the available options are
described below. If an option can be specified in more than one way, the choices are comma-separated. Some options only have a long vari-
ant, not a short. If the option takes a parameter, the parameter is only listed after the long variant, even though it must also be speci-
fied for the short. When specifying a parameter, you can either use the form --option=param or replace the '=' with whitespace. The
parameter may need to be quoted in some manner for it to survive the shell's command-line parsing. Keep in mind that a leading tilde (~)
in a filename is substituted by your shell, so --option=~/foo will not change the tilde into your home directory (remove the '=' for that).
--help Print a short help page describing the options available in rsync and exit. For backward-compatibility with older versions of
rsync, the help will also be output if you use the -h option without any other args.
--version
print the rsync version number and exit.
-v, --verbose
This option increases the amount of information you are given during the transfer. By default, rsync works silently. A single -v
will give you information about what files are being transferred and a brief summary at the end. Two -v options will give you infor-
mation on what files are being skipped and slightly more information at the end. More than two -v options should only be used if you
are debugging rsync.
In a modern rsync, the -v option is equivalent to the setting of groups of --info and --debug options. You can choose to use these
newer options in addition to, or in place of using --verbose, as any fine-grained settings override the implied settings of -v.
Both --info and --debug have a way to ask for help that tells you exactly what flags are set for each increase in verbosity.
However, do keep in mind that a daemon's "max verbosity" setting will limit how high of a level the various individual flags can be
set on the daemon side. For instance, if the max is 2, then any info and/or debug flag that is set to a higher value than what
would be set by -vv will be downgraded to the -vv level in the daemon's logging.
--info=FLAGS
This option lets you have fine-grained control over the information output you want to see. An individual flag name may be followed
by a level number, with 0 meaning to silence that output, 1 being the default output level, and higher numbers increasing the output
of that flag (for those that support higher levels). Use --info=help to see all the available flag names, what they output, and
what flag names are added for each increase in the verbose level. Some examples:
rsync -a --info=progress2 src/ dest/
rsync -avv --info=stats2,misc1,flist0 src/ dest/
Note that --info=name's output is affected by the --out-format and --itemize-changes (-i) options. See those options for more
information on what is output and when.
This option was added to 3.1.0, so an older rsync on the server side might reject your attempts at fine-grained control (if one or
more flags needed to be send to the server and the server was too old to understand them). See also the "max verbosity" caveat
above when dealing with a daemon.
--debug=FLAGS
This option lets you have fine-grained control over the debug output you want to see. An individual flag name may be followed by a
level number, with 0 meaning to silence that output, 1 being the default output level, and higher numbers increasing the output of
that flag (for those that support higher levels). Use --debug=help to see all the available flag names, what they output, and what
flag names are added for each increase in the verbose level. Some examples:
rsync -avvv --debug=none src/ dest/
rsync -avA --del --debug=del2,acl src/ dest/
Note that some debug messages will only be output when --msgs2stderr is specified, especially those pertaining to I/O and buffer
debugging.
This option was added to 3.1.0, so an older rsync on the server side might reject your attempts at fine-grained control (if one or
more flags needed to be send to the server and the server was too old to understand them). See also the "max verbosity" caveat
above when dealing with a daemon.
--msgs2stderr
This option changes rsync to send all its output directly to stderr rather than to send messages to the client side via the protocol
(which normally outputs info messages via stdout). This is mainly intended for debugging in order to avoid changing the data sent
via the protocol, since the extra protocol data can change what is being tested. The option does not affect the remote side of a
transfer without using --remote-option -- e.g. -M--msgs2stderr. Also keep in mind that a daemon connection does not have a stderr
channel to send messages back to the client side, so if you are doing any daemon-transfer debugging using this option, you should
start up a daemon using --no-detach so that you can see the stderr output on the daemon side.
This option has the side-effect of making stderr output get line-buffered so that the merging of the output of 3 programs happens in
a more readable manner.
-q, --quiet
This option decreases the amount of information you are given during the transfer, notably suppressing information messages from the
remote server. This option is useful when invoking rsync from cron.
--no-motd
This option affects the information that is output by the client at the start of a daemon transfer. This suppresses the mes-
sage-of-the-day (MOTD) text, but it also affects the list of modules that the daemon sends in response to the "rsync host::" request
(due to a limitation in the rsync protocol), so omit this option if you want to request the list of modules from the daemon.
-I, --ignore-times
Normally rsync will skip any files that are already the same size and have the same modification timestamp. This option turns off
this "quick check" behavior, causing all files to be updated.
--size-only
This modifies rsync's "quick check" algorithm for finding files that need to be transferred, changing it from the default of trans-
ferring files with either a changed size or a changed last-modified time to just looking for files that have changed in size. This
is useful when starting to use rsync after using another mirroring system which may not preserve timestamps exactly.
--modify-window
When comparing two timestamps, rsync treats the timestamps as being equal if they differ by no more than the modify-window value.
This is normally 0 (for an exact match), but you may find it useful to set this to a larger value in some situations. In particu-
lar, when transferring to or from an MS Windows FAT filesystem (which represents times with a 2-second resolution), --modify-win-
dow=1 is useful (allowing times to differ by up to 1 second).
-c, --checksum
This changes the way rsync checks if the files have been changed and are in need of a transfer. Without this option, rsync uses a
"quick check" that (by default) checks if each file's size and time of last modification match between the sender and receiver.
This option changes this to compare a 128-bit checksum for each file that has a matching size. Generating the checksums means that
both sides will expend a lot of disk I/O reading all the data in the files in the transfer (and this is prior to any reading that
will be done to transfer changed files), so this can slow things down significantly.
The sending side generates its checksums while it is doing the file-system scan that builds the list of the available files. The
receiver generates its checksums when it is scanning for changed files, and will checksum any file that has the same size as the
corresponding sender's file: files with either a changed size or a changed checksum are selected for transfer.
Note that rsync always verifies that each transferred file was correctly reconstructed on the receiving side by checking a
whole-file checksum that is generated as the file is transferred, but that automatic after-the-transfer verification has nothing to
do with this option's before-the-transfer "Does this file need to be updated?" check.
For protocol 30 and beyond (first supported in 3.0.0), the checksum used is MD5. For older protocols, the checksum used is MD4.
-a, --archive
This is equivalent to -rlptgoD. It is a quick way of saying you want recursion and want to preserve almost everything (with -H being
a notable omission). The only exception to the above equivalence is when --files-from is specified, in which case -r is not
implied.
Note that -a does not preserve hardlinks, because finding multiply-linked files is expensive. You must separately specify -H.
--no-OPTION
You may turn off one or more implied options by prefixing the option name with "no-". Not all options may be prefixed with a "no-":
only options that are implied by other options (e.g. --no-D, --no-perms) or have different defaults in various circumstances (e.g.
--no-whole-file, --no-blocking-io, --no-dirs). You may specify either the short or the long option name after the "no-" prefix
(e.g. --no-R is the same as --no-relative).
For example: if you want to use -a (--archive) but don't want -o (--owner), instead of converting -a into -rlptgD, you could specify
-a --no-o (or -a --no-owner).
The order of the options is important: if you specify --no-r -a, the -r option would end up being turned on, the opposite of -a
--no-r. Note also that the side-effects of the --files-from option are NOT positional, as it affects the default state of several
options and slightly changes the meaning of -a (see the --files-from option for more details).
-r, --recursive
This tells rsync to copy directories recursively. See also --dirs (-d).
Beginning with rsync 3.0.0, the recursive algorithm used is now an incremental scan that uses much less memory than before and
begins the transfer after the scanning of the first few directories have been completed. This incremental scan only affects our
recursion algorithm, and does not change a non-recursive transfer. It is also only possible when both ends of the transfer are at
least version 3.0.0.
Some options require rsync to know the full file list, so these options disable the incremental recursion mode. These include:
--delete-before, --delete-after, --prune-empty-dirs, and --delay-updates. Because of this, the default delete mode when you specify
--delete is now --delete-during when both ends of the connection are at least 3.0.0 (use --del or --delete-during to request this
improved deletion mode explicitly). See also the --delete-delay option that is a better choice than using --delete-after.
Incremental recursion can be disabled using the --no-inc-recursive option or its shorter --no-i-r alias.
-R, --relative
Use relative paths. This means that the full path names specified on the command line are sent to the server rather than just the
last parts of the filenames. This is particularly useful when you want to send several different directories at the same time. For
example, if you used this command:
rsync -av /foo/bar/baz.c remote:/tmp/
... this would create a file named baz.c in /tmp/ on the remote machine. If instead you used
rsync -avR /foo/bar/baz.c remote:/tmp/
then a file named /tmp/foo/bar/baz.c would be created on the remote machine, preserving its full path. These extra path elements
are called "implied directories" (i.e. the "foo" and the "foo/bar" directories in the above example).
Beginning with rsync 3.0.0, rsync always sends these implied directories as real directories in the file list, even if a path ele-
ment is really a symlink on the sending side. This prevents some really unexpected behaviors when copying the full path of a file
that you didn't realize had a symlink in its path. If you want to duplicate a server-side symlink, include both the symlink via its
path, and referent directory via its real path. If you're dealing with an older rsync on the sending side, you may need to use the
--no-implied-dirs option.
It is also possible to limit the amount of path information that is sent as implied directories for each path you specify. With a
modern rsync on the sending side (beginning with 2.6.7), you can insert a dot and a slash into the source path, like this:
rsync -avR /foo/./bar/baz.c remote:/tmp/
That would create /tmp/bar/baz.c on the remote machine. (Note that the dot must be followed by a slash, so "/foo/." would not be
abbreviated.) For older rsync versions, you would need to use a chdir to limit the source path. For example, when pushing files:
(cd /foo; rsync -avR bar/baz.c remote:/tmp/)
(Note that the parens put the two commands into a sub-shell, so that the "cd" command doesn't remain in effect for future commands.)
If you're pulling files from an older rsync, use this idiom (but only for a non-daemon transfer):
rsync -avR --rsync-path="cd /foo; rsync"
remote:bar/baz.c /tmp/
--no-implied-dirs
This option affects the default behavior of the --relative option. When it is specified, the attributes of the implied directories
from the source names are not included in the transfer. This means that the corresponding path elements on the destination system
are left unchanged if they exist, and any missing implied directories are created with default attributes. This even allows these
implied path elements to have big differences, such as being a symlink to a directory on the receiving side.
For instance, if a command-line arg or a files-from entry told rsync to transfer the file "path/foo/file", the directories "path"
and "path/foo" are implied when --relative is used. If "path/foo" is a symlink to "bar" on the destination system, the receiving
rsync would ordinarily delete "path/foo", recreate it as a directory, and receive the file into the new directory. With
--no-implied-dirs, the receiving rsync updates "path/foo/file" using the existing path elements, which means that the file ends up
being created in "path/bar". Another way to accomplish this link preservation is to use the --keep-dirlinks option (which will also
affect symlinks to directories in the rest of the transfer).
When pulling files from an rsync older than 3.0.0, you may need to use this option if the sending side has a symlink in the path you
request and you wish the implied directories to be transferred as normal directories.
-b, --backup
With this option, preexisting destination files are renamed as each file is transferred or deleted. You can control where the
backup file goes and what (if any) suffix gets appended using the --backup-dir and --suffix options.
Note that if you don't specify --backup-dir, (1) the --omit-dir-times option will be implied, and (2) if --delete is also in effect
(without --delete-excluded), rsync will add a "protect" filter-rule for the backup suffix to the end of all your existing excludes
(e.g. -f "P *~"). This will prevent previously backed-up files from being deleted. Note that if you are supplying your own filter
rules, you may need to manually insert your own exclude/protect rule somewhere higher up in the list so that it has a high enough
priority to be effective (e.g., if your rules specify a trailing inclusion/exclusion of '*', the auto-added rule would never be
reached).
--backup-dir=DIR
In combination with the --backup option, this tells rsync to store all backups in the specified directory on the receiving side.
This can be used for incremental backups. You can additionally specify a backup suffix using the --suffix option (otherwise the
files backed up in the specified directory will keep their original filenames).
Note that if you specify a relative path, the backup directory will be relative to the destination directory, so you probably want
to specify either an absolute path or a path that starts with "../". If an rsync daemon is the receiver, the backup dir cannot go
outside the module's path hierarchy, so take extra care not to delete it or copy into it.
--suffix=SUFFIX
This option allows you to override the default backup suffix used with the --backup (-b) option. The default suffix is a ~ if no
--backup-dir was specified, otherwise it is an empty string.
-u, --update
This forces rsync to skip any files which exist on the destination and have a modified time that is newer than the source file. (If
an existing destination file has a modification time equal to the source file's, it will be updated if the sizes are different.)
Note that this does not affect the copying of dirs, symlinks, or other special files. Also, a difference of file format between the
sender and receiver is always considered to be important enough for an update, no matter what date is on the objects. In other
words, if the source has a directory where the destination has a file, the transfer would occur regardless of the timestamps.
This option is a transfer rule, not an exclude, so it doesn't affect the data that goes into the file-lists, and thus it doesn't
affect deletions. It just limits the files that the receiver requests to be transferred.
--inplace
This option changes how rsync transfers a file when its data needs to be updated: instead of the default method of creating a new
copy of the file and moving it into place when it is complete, rsync instead writes the updated data directly to the destination
file.
This has several effects:
o Hard links are not broken. This means the new data will be visible through other hard links to the destination file. More-
over, attempts to copy differing source files onto a multiply-linked destination file will result in a "tug of war" with the
destination data changing back and forth.
o In-use binaries cannot be updated (either the OS will prevent this from happening, or binaries that attempt to swap-in their
data will misbehave or crash).
o The file's data will be in an inconsistent state during the transfer and will be left that way if the transfer is interrupted
or if an update fails.
o A file that rsync cannot write to cannot be updated. While a super user can update any file, a normal user needs to be
granted write permission for the open of the file for writing to be successful.
o The efficiency of rsync's delta-transfer algorithm may be reduced if some data in the destination file is overwritten before
it can be copied to a position later in the file. This does not apply if you use --backup, since rsync is smart enough to
use the backup file as the basis file for the transfer.
WARNING: you should not use this option to update files that are being accessed by others, so be careful when choosing to use this
for a copy.
This option is useful for transferring large files with block-based changes or appended data, and also on systems that are disk
bound, not network bound. It can also help keep a copy-on-write filesystem snapshot from diverging the entire contents of a file
that only has minor changes.
The option implies --partial (since an interrupted transfer does not delete the file), but conflicts with --partial-dir and
--delay-updates. Prior to rsync 2.6.4 --inplace was also incompatible with --compare-dest and --link-dest.
--append
This causes rsync to update a file by appending data onto the end of the file, which presumes that the data that already exists on
the receiving side is identical with the start of the file on the sending side. If a file needs to be transferred and its size on
the receiver is the same or longer than the size on the sender, the file is skipped. This does not interfere with the updating of a
file's non-content attributes (e.g. permissions, ownership, etc.) when the file does not need to be transferred, nor does it affect
the updating of any non-regular files. Implies --inplace, but does not conflict with --sparse (since it is always extending a
file's length).
The use of --append can be dangerous if you aren't 100% sure that the files that are longer have only grown by the appending of data
onto the end. You should thus use include/exclude/filter rules to ensure that such a transfer is only affecting files that you know
to be growing via appended data.
--append-verify
This works just like the --append option, but the existing data on the receiving side is included in the full-file checksum verifi-
cation step, which will cause a file to be resent if the final verification step fails (rsync uses a normal, non-appending --inplace
transfer for the resend).
Note: prior to rsync 3.0.0, the --append option worked like --append-verify, so if you are interacting with an older rsync (or the
transfer is using a protocol prior to 30), specifying either append option will initiate an --append-verify transfer.
-d, --dirs
Tell the sending side to include any directories that are encountered. Unlike --recursive, a directory's contents are not copied
unless the directory name specified is "." or ends with a trailing slash (e.g. ".", "dir/.", "dir/", etc.). Without this option or
the --recursive option, rsync will skip all directories it encounters (and output a message to that effect for each one). If you
specify both --dirs and --recursive, --recursive takes precedence.
The --dirs option is implied by the --files-from option or the --list-only option (including an implied --list-only usage) if
--recursive wasn't specified (so that directories are seen in the listing). Specify --no-dirs (or --no-d) if you want to turn this
off.
There is also a backward-compatibility helper option, --old-dirs (or --old-d) that tells rsync to use a hack of "-r
--exclude='/*/*'" to get an older rsync to list a single directory without recursing.
-l, --links
When symlinks are encountered, recreate the symlink on the destination.
-L, --copy-links
When symlinks are encountered, the item that they point to (the referent) is copied, rather than the symlink. In older versions of
rsync, this option also had the side-effect of telling the receiving side to follow symlinks, such as symlinks to directories. In a
modern rsync such as this one, you'll need to specify --keep-dirlinks (-K) to get this extra behavior. The only exception is when
sending files to an rsync that is too old to understand -K -- in that case, the -L option will still have the side-effect of -K on
that older receiving rsync.
--copy-unsafe-links
This tells rsync to copy the referent of symbolic links that point outside the copied tree. Absolute symlinks are also treated like
ordinary files, and so are any symlinks in the source path itself when --relative is used. This option has no additional effect if
--copy-links was also specified.
--safe-links
This tells rsync to ignore any symbolic links which point outside the copied tree. All absolute symlinks are also ignored. Using
this option in conjunction with --relative may give unexpected results.
--munge-links
This option tells rsync to (1) modify all symlinks on the receiving side in a way that makes them unusable but recoverable (see
below), or (2) to unmunge symlinks on the sending side that had been stored in a munged state. This is useful if you don't quite
trust the source of the data to not try to slip in a symlink to a unexpected place.
The way rsync disables the use of symlinks is to prefix each one with the string "/rsyncd-munged/". This prevents the links from
being used as long as that directory does not exist. When this option is enabled, rsync will refuse to run if that path is a direc-
tory or a symlink to a directory.
The option only affects the client side of the transfer, so if you need it to affect the server, specify it via --remote-option.
(Note that in a local transfer, the client side is the sender.)
This option has no affect on a daemon, since the daemon configures whether it wants munged symlinks via its "munge symlinks" parame-
ter. See also the "munge-symlinks" perl script in the support directory of the source code.
-k, --copy-dirlinks
This option causes the sending side to treat a symlink to a directory as though it were a real directory. This is useful if you
don't want symlinks to non-directories to be affected, as they would be using --copy-links.
Without this option, if the sending side has replaced a directory with a symlink to a directory, the receiving side will delete any-
thing that is in the way of the new symlink, including a directory hierarchy (as long as --force or --delete is in effect).
See also --keep-dirlinks for an analogous option for the receiving side.
--copy-dirlinks applies to all symlinks to directories in the source. If you want to follow only a few specified symlinks, a trick
you can use is to pass them as additional source args with a trailing slash, using --relative to make the paths match up right. For
example:
rsync -r --relative src/./ src/./follow-me/ dest/
This works because rsync calls lstat(2) on the source arg as given, and the trailing slash makes lstat(2) follow the symlink, giving
rise to a directory in the file-list which overrides the symlink found during the scan of "src/./".
-K, --keep-dirlinks
This option causes the receiving side to treat a symlink to a directory as though it were a real directory, but only if it matches a
real directory from the sender. Without this option, the receiver's symlink would be deleted and replaced with a real directory.
For example, suppose you transfer a directory "foo" that contains a file "file", but "foo" is a symlink to directory "bar" on the
receiver. Without --keep-dirlinks, the receiver deletes symlink "foo", recreates it as a directory, and receives the file into the
new directory. With --keep-dirlinks, the receiver keeps the symlink and "file" ends up in "bar".
One note of caution: if you use --keep-dirlinks, you must trust all the symlinks in the copy! If it is possible for an untrusted
user to create their own symlink to any directory, the user could then (on a subsequent copy) replace the symlink with a real direc-
tory and affect the content of whatever directory the symlink references. For backup copies, you are better off using something
like a bind mount instead of a symlink to modify your receiving hierarchy.
See also --copy-dirlinks for an analogous option for the sending side.
-H, --hard-links
This tells rsync to look for hard-linked files in the source and link together the corresponding files on the destination. Without
this option, hard-linked files in the source are treated as though they were separate files.
This option does NOT necessarily ensure that the pattern of hard links on the destination exactly matches that on the source. Cases
in which the destination may end up with extra hard links include the following:
o If the destination contains extraneous hard-links (more linking than what is present in the source file list), the copying
algorithm will not break them explicitly. However, if one or more of the paths have content differences, the normal
file-update process will break those extra links (unless you are using the --inplace option).
o If you specify a --link-dest directory that contains hard links, the linking of the destination files against the --link-dest
files can cause some paths in the destination to become linked together due to the --link-dest associations.
Note that rsync can only detect hard links between files that are inside the transfer set. If rsync updates a file that has extra
hard-link connections to files outside the transfer, that linkage will be broken. If you are tempted to use the --inplace option to
avoid this breakage, be very careful that you know how your files are being updated so that you are certain that no unintended
changes happen due to lingering hard links (and see the --inplace option for more caveats).
If incremental recursion is active (see --recursive), rsync may transfer a missing hard-linked file before it finds that another
link for that contents exists elsewhere in the hierarchy. This does not affect the accuracy of the transfer (i.e. which files are
hard-linked together), just its efficiency (i.e. copying the data for a new, early copy of a hard-linked file that could have been
found later in the transfer in another member of the hard-linked set of files). One way to avoid this inefficiency is to disable
incremental recursion using the --no-inc-recursive option.
-p, --perms
This option causes the receiving rsync to set the destination permissions to be the same as the source permissions. (See also the
--chmod option for a way to modify what rsync considers to be the source permissions.)
When this option is off, permissions are set as follows:
o Existing files (including updated files) retain their existing permissions, though the --executability option might change
just the execute permission for the file.
o New files get their "normal" permission bits set to the source file's permissions masked with the receiving directory's
default permissions (either the receiving process's umask, or the permissions specified via the destination directory's
default ACL), and their special permission bits disabled except in the case where a new directory inherits a setgid bit from
its parent directory.
Thus, when --perms and --executability are both disabled, rsync's behavior is the same as that of other file-copy utilities, such as
cp(1) and tar(1).
In summary: to give destination files (both old and new) the source permissions, use --perms. To give new files the destina-
tion-default permissions (while leaving existing files unchanged), make sure that the --perms option is off and use --chmod=ugo=rwX
(which ensures that all non-masked bits get enabled). If you'd care to make this latter behavior easier to type, you could define a
popt alias for it, such as putting this line in the file ~/.popt (the following defines the -Z option, and includes --no-g to use
the default group of the destination dir):
rsync alias -Z --no-p --no-g --chmod=ugo=rwX
You could then use this new option in a command such as this one:
rsync -avZ src/ dest/
(Caveat: make sure that -a does not follow -Z, or it will re-enable the two "--no-*" options mentioned above.)
The preservation of the destination's setgid bit on newly-created directories when --perms is off was added in rsync 2.6.7. Older
rsync versions erroneously preserved the three special permission bits for newly-created files when --perms was off, while overrid-
ing the destination's setgid bit setting on a newly-created directory. Default ACL observance was added to the ACL patch for rsync
2.6.7, so older (or non-ACL-enabled) rsyncs use the umask even if default ACLs are present. (Keep in mind that it is the version of
the receiving rsync that affects these behaviors.)
-E, --executability
This option causes rsync to preserve the executability (or non-executability) of regular files when --perms is not enabled. A regu-
lar file is considered to be executable if at least one 'x' is turned on in its permissions. When an existing destination file's
executability differs from that of the corresponding source file, rsync modifies the destination file's permissions as follows:
o To make a file non-executable, rsync turns off all its 'x' permissions.
o To make a file executable, rsync turns on each 'x' permission that has a corresponding 'r' permission enabled.
If --perms is enabled, this option is ignored.
-A, --acls
This option causes rsync to update the destination ACLs to be the same as the source ACLs. The option also implies --perms.
The source and destination systems must have compatible ACL entries for this option to work properly. See the --fake-super option
for a way to backup and restore ACLs that are not compatible.
-X, --xattrs
This option causes rsync to update the destination extended attributes to be the same as the source ones.
For systems that support extended-attribute namespaces, a copy being done by a super-user copies all namespaces except system.*. A
normal user only copies the user.* namespace. To be able to backup and restore non-user namespaces as a normal user, see the
--fake-super option.
Note that this option does not copy rsyncs special xattr values (e.g. those used by --fake-super) unless you repeat the option (e.g.
-XX). This "copy all xattrs" mode cannot be used with --fake-super.
--chmod
This option tells rsync to apply one or more comma-separated "chmod" modes to the permission of the files in the transfer. The
resulting value is treated as though it were the permissions that the sending side supplied for the file, which means that this
option can seem to have no effect on existing files if --perms is not enabled.
In addition to the normal parsing rules specified in the chmod(1) manpage, you can specify an item that should only apply to a
directory by prefixing it with a 'D', or specify an item that should only apply to a file by prefixing it with a 'F'. For example,
the following will ensure that all directories get marked set-gid, that no files are other-writable, that both are user-writable and
group-writable, and that both have consistent executability across all bits:
--chmod=Dg+s,ug+w,Fo-w,+X
Using octal mode numbers is also allowed:
--chmod=D2775,F664
It is also legal to specify multiple --chmod options, as each additional option is just appended to the list of changes to make.
See the --perms and --executability options for how the resulting permission value can be applied to the files in the transfer.
-o, --owner
This option causes rsync to set the owner of the destination file to be the same as the source file, but only if the receiving rsync
is being run as the super-user (see also the --super and --fake-super options). Without this option, the owner of new and/or trans-
ferred files are set to the invoking user on the receiving side.
The preservation of ownership will associate matching names by default, but may fall back to using the ID number in some circum-
stances (see also the --numeric-ids option for a full discussion).
-g, --group
This option causes rsync to set the group of the destination file to be the same as the source file. If the receiving program is
not running as the super-user (or if --no-super was specified), only groups that the invoking user on the receiving side is a member
of will be preserved. Without this option, the group is set to the default group of the invoking user on the receiving side.
The preservation of group information will associate matching names by default, but may fall back to using the ID number in some
circumstances (see also the --numeric-ids option for a full discussion).
--devices
This option causes rsync to transfer character and block device files to the remote system to recreate these devices. This option
has no effect if the receiving rsync is not run as the super-user (see also the --super and --fake-super options).
--specials
This option causes rsync to transfer special files such as named sockets and fifos.
-D The -D option is equivalent to --devices --specials.
-t, --times
This tells rsync to transfer modification times along with the files and update them on the remote system. Note that if this option
is not used, the optimization that excludes files that have not been modified cannot be effective; in other words, a missing -t or
-a will cause the next transfer to behave as if it used -I, causing all files to be updated (though rsync's delta-transfer algorithm
will make the update fairly efficient if the files haven't actually changed, you're much better off using -t).
-O, --omit-dir-times
This tells rsync to omit directories when it is preserving modification times (see --times). If NFS is sharing the directories on
the receiving side, it is a good idea to use -O. This option is inferred if you use --backup without --backup-dir.
This option also has the side-effect of avoiding early creation of directories in incremental recursion copies. The default
--inc-recursive copying normally does an early-create pass of all the sub-directories in a parent directory in order for it to be
able to then set the modify time of the parent directory right away (without having to delay that until a bunch of recursive copying
has finished). This early-create idiom is not necessary if directory modify times are not being preserved, so it is skipped. Since
early-create directories don't have accurate mode, mtime, or ownership, the use of this option can help when someone wants to avoid
these partially-finished directories.
-J, --omit-link-times
This tells rsync to omit symlinks when it is preserving modification times (see --times).
--super
This tells the receiving side to attempt super-user activities even if the receiving rsync wasn't run by the super-user. These
activities include: preserving users via the --owner option, preserving all groups (not just the current user's groups) via the
--groups option, and copying devices via the --devices option. This is useful for systems that allow such activities without being
the super-user, and also for ensuring that you will get errors if the receiving side isn't being run as the super-user. To turn off
super-user activities, the super-user can use --no-super.
--fake-super
When this option is enabled, rsync simulates super-user activities by saving/restoring the privileged attributes via special
extended attributes that are attached to each file (as needed). This includes the file's owner and group (if it is not the
default), the file's device info (device & special files are created as empty text files), and any permission bits that we won't
allow to be set on the real file (e.g. the real file gets u-s,g-s,o-t for safety) or that would limit the owner's access (since the
real super-user can always access/change a file, the files we create can always be accessed/changed by the creating user). This
option also handles ACLs (if --acls was specified) and non-user extended attributes (if --xattrs was specified).
This is a good way to backup data without using a super-user, and to store ACLs from incompatible systems.
The --fake-super option only affects the side where the option is used. To affect the remote side of a remote-shell connection, use
the --remote-option (-M) option:
rsync -av -M--fake-super /src/ host:/dest/
For a local copy, this option affects both the source and the destination. If you wish a local copy to enable this option just for
the destination files, specify -M--fake-super. If you wish a local copy to enable this option just for the source files, combine
--fake-super with -M--super.
This option is overridden by both --super and --no-super.
See also the "fake super" setting in the daemon's rsyncd.conf file.
-S, --sparse
Try to handle sparse files efficiently so they take up less space on the destination. Conflicts with --inplace because it's not
possible to overwrite data in a sparse fashion.
--preallocate
This tells the receiver to allocate each destination file to its eventual size before writing data to the file. Rsync will only use
the real filesystem-level preallocation support provided by Linux's fallocate(2) system call or Cygwin's posix_fallocate(3), not the
slow glibc implementation that writes a zero byte into each block.
Without this option, larger files may not be entirely contiguous on the filesystem, but with this option rsync will probably copy
more slowly. If the destination is not an extent-supporting filesystem (such as ext4, xfs, NTFS, etc.), this option may have no
positive effect at all.
-n, --dry-run
This makes rsync perform a trial run that doesn't make any changes (and produces mostly the same output as a real run). It is most
commonly used in combination with the -v, --verbose and/or -i, --itemize-changes options to see what an rsync command is going to do
before one actually runs it.
The output of --itemize-changes is supposed to be exactly the same on a dry run and a subsequent real run (barring intentional
trickery and system call failures); if it isn't, that's a bug. Other output should be mostly unchanged, but may differ in some
areas. Notably, a dry run does not send the actual data for file transfers, so --progress has no effect, the "bytes sent", "bytes
received", "literal data", and "matched data" statistics are too small, and the "speedup" value is equivalent to a run where no file
transfers were needed.
-W, --whole-file
With this option rsync's delta-transfer algorithm is not used and the whole file is sent as-is instead. The transfer may be faster
if this option is used when the bandwidth between the source and destination machines is higher than the bandwidth to disk (espe-
cially when the "disk" is actually a networked filesystem). This is the default when both the source and destination are specified
as local paths, but only if no batch-writing option is in effect.
-x, --one-file-system
This tells rsync to avoid crossing a filesystem boundary when recursing. This does not limit the user's ability to specify items to
copy from multiple filesystems, just rsync's recursion through the hierarchy of each directory that the user specified, and also the
analogous recursion on the receiving side during deletion. Also keep in mind that rsync treats a "bind" mount to the same device as
being on the same filesystem.
If this option is repeated, rsync omits all mount-point directories from the copy. Otherwise, it includes an empty directory at
each mount-point it encounters (using the attributes of the mounted directory because those of the underlying mount-point directory
are inaccessible).
If rsync has been told to collapse symlinks (via --copy-links or --copy-unsafe-links), a symlink to a directory on another device is
treated like a mount-point. Symlinks to non-directories are unaffected by this option.
--existing, --ignore-non-existing
This tells rsync to skip creating files (including directories) that do not exist yet on the destination. If this option is com-
bined with the --ignore-existing option, no files will be updated (which can be useful if all you want to do is delete extraneous
files).
This option is a transfer rule, not an exclude, so it doesn't affect the data that goes into the file-lists, and thus it doesn't
affect deletions. It just limits the files that the receiver requests to be transferred.
--ignore-existing
This tells rsync to skip updating files that already exist on the destination (this does not ignore existing directories, or nothing
would get done). See also --existing.
This option is a transfer rule, not an exclude, so it doesn't affect the data that goes into the file-lists, and thus it doesn't
affect deletions. It just limits the files that the receiver requests to be transferred.
This option can be useful for those doing backups using the --link-dest option when they need to continue a backup run that got
interrupted. Since a --link-dest run is copied into a new directory hierarchy (when it is used properly), using --ignore existing
will ensure that the already-handled files don't get tweaked (which avoids a change in permissions on the hard-linked files). This
does mean that this option is only looking at the existing files in the destination hierarchy itself.
--remove-source-files
This tells rsync to remove from the sending side the files (meaning non-directories) that are a part of the transfer and have been
successfully duplicated on the receiving side.
Note that you should only use this option on source files that are quiescent. If you are using this to move files that show up in a
particular directory over to another host, make sure that the finished files get renamed into the source directory, not directly
written into it, so that rsync can't possibly transfer a file that is not yet fully written. If you can't first write the files
into a different directory, you should use a naming idiom that lets rsync avoid transferring files that are not yet finished (e.g.
name the file "foo.new" when it is written, rename it to "foo" when it is done, and then use the option --exclude='*.new' for the
rsync transfer).
Starting with 3.1.0, rsync will skip the sender-side removal (and output an error) if the file's size or modify time has not stayed
unchanged.
--delete
This tells rsync to delete extraneous files from the receiving side (ones that aren't on the sending side), but only for the direc-
tories that are being synchronized. You must have asked rsync to send the whole directory (e.g. "dir" or "dir/") without using a
wildcard for the directory's contents (e.g. "dir/*") since the wildcard is expanded by the shell and rsync thus gets a request to
transfer individual files, not the files' parent directory. Files that are excluded from the transfer are also excluded from being
deleted unless you use the --delete-excluded option or mark the rules as only matching on the sending side (see the include/exclude
modifiers in the FILTER RULES section).
Prior to rsync 2.6.7, this option would have no effect unless --recursive was enabled. Beginning with 2.6.7, deletions will also
occur when --dirs (-d) is enabled, but only for directories whose contents are being copied.
This option can be dangerous if used incorrectly! It is a very good idea to first try a run using the --dry-run option (-n) to see
what files are going to be deleted.
If the sending side detects any I/O errors, then the deletion of any files at the destination will be automatically disabled. This
is to prevent temporary filesystem failures (such as NFS errors) on the sending side from causing a massive deletion of files on the
destination. You can override this with the --ignore-errors option.
The --delete option may be combined with one of the --delete-WHEN options without conflict, as well as --delete-excluded. However,
if none of the --delete-WHEN options are specified, rsync will choose the --delete-during algorithm when talking to rsync 3.0.0 or
newer, and the --delete-before algorithm when talking to an older rsync. See also --delete-delay and --delete-after.
--delete-before
Request that the file-deletions on the receiving side be done before the transfer starts. See --delete (which is implied) for more
details on file-deletion.
Deleting before the transfer is helpful if the filesystem is tight for space and removing extraneous files would help to make the
transfer possible. However, it does introduce a delay before the start of the transfer, and this delay might cause the transfer to
timeout (if --timeout was specified). It also forces rsync to use the old, non-incremental recursion algorithm that requires rsync
to scan all the files in the transfer into memory at once (see --recursive).
--delete-during, --del
Request that the file-deletions on the receiving side be done incrementally as the transfer happens. The per-directory delete scan
is done right before each directory is checked for updates, so it behaves like a more efficient --delete-before, including doing the
deletions prior to any per-directory filter files being updated. This option was first added in rsync version 2.6.4. See --delete
(which is implied) for more details on file-deletion.
--delete-delay
Request that the file-deletions on the receiving side be computed during the transfer (like --delete-during), and then removed after
the transfer completes. This is useful when combined with --delay-updates and/or --fuzzy, and is more efficient than using
--delete-after (but can behave differently, since --delete-after computes the deletions in a separate pass after all updates are
done). If the number of removed files overflows an internal buffer, a temporary file will be created on the receiving side to hold
the names (it is removed while open, so you shouldn't see it during the transfer). If the creation of the temporary file fails,
rsync will try to fall back to using --delete-after (which it cannot do if --recursive is doing an incremental scan). See --delete
(which is implied) for more details on file-deletion.
--delete-after
Request that the file-deletions on the receiving side be done after the transfer has completed. This is useful if you are sending
new per-directory merge files as a part of the transfer and you want their exclusions to take effect for the delete phase of the
current transfer. It also forces rsync to use the old, non-incremental recursion algorithm that requires rsync to scan all the
files in the transfer into memory at once (see --recursive). See --delete (which is implied) for more details on file-deletion.
--delete-excluded
In addition to deleting the files on the receiving side that are not on the sending side, this tells rsync to also delete any files
on the receiving side that are excluded (see --exclude). See the FILTER RULES section for a way to make individual exclusions
behave this way on the receiver, and for a way to protect files from --delete-excluded. See --delete (which is implied) for more
details on file-deletion.
--ignore-missing-args
When rsync is first processing the explicitly requested source files (e.g. command-line arguments or --files-from entries), it is
normally an error if the file cannot be found. This option suppresses that error, and does not try to transfer the file. This does
not affect subsequent vanished-file errors if a file was initially found to be present and later is no longer there.
--delete-missing-args
This option takes the behavior of (the implied) --ignore-missing-args option a step farther: each missing arg will become a dele-
tion request of the corresponding destination file on the receiving side (should it exist). If the destination file is a non-empty
directory, it will only be successfully deleted if --force or --delete are in effect. Other than that, this option is independent
of any other type of delete processing.
The missing source files are represented by special file-list entries which display as a "*missing" entry in the --list-only output.
--ignore-errors
Tells --delete to go ahead and delete files even when there are I/O errors.
--force
This option tells rsync to delete a non-empty directory when it is to be replaced by a non-directory. This is only relevant if
deletions are not active (see --delete for details).
Note for older rsync versions: --force used to still be required when using --delete-after, and it used to be non-functional unless
the --recursive option was also enabled.
--max-delete=NUM
This tells rsync not to delete more than NUM files or directories. If that limit is exceeded, all further deletions are skipped
through the end of the transfer. At the end, rsync outputs a warning (including a count of the skipped deletions) and exits with an
error code of 25 (unless some more important error condition also occurred).
Beginning with version 3.0.0, you may specify --max-delete=0 to be warned about any extraneous files in the destination without
removing any of them. Older clients interpreted this as "unlimited", so if you don't know what version the client is, you can use
the less obvious --max-delete=-1 as a backward-compatible way to specify that no deletions be allowed (though really old versions
didn't warn when the limit was exceeded).
--max-size=SIZE
This tells rsync to avoid transferring any file that is larger than the specified SIZE. The SIZE value can be suffixed with a string
to indicate a size multiplier, and may be a fractional value (e.g. "--max-size=1.5m").
This option is a transfer rule, not an exclude, so it doesn't affect the data that goes into the file-lists, and thus it doesn't
affect deletions. It just limits the files that the receiver requests to be transferred.
The suffixes are as follows: "K" (or "KiB") is a kibibyte (1024), "M" (or "MiB") is a mebibyte (1024*1024), and "G" (or "GiB") is a
gibibyte (1024*1024*1024). If you want the multiplier to be 1000 instead of 1024, use "KB", "MB", or "GB". (Note: lower-case is
also accepted for all values.) Finally, if the suffix ends in either "+1" or "-1", the value will be offset by one byte in the
indicated direction.
Examples: --max-size=1.5mb-1 is 1499999 bytes, and --max-size=2g+1 is 2147483649 bytes.
Note that rsync versions prior to 3.1.0 did not allow --max-size=0.
--min-size=SIZE
This tells rsync to avoid transferring any file that is smaller than the specified SIZE, which can help in not transferring small,
junk files. See the --max-size option for a description of SIZE and other information.
Note that rsync versions prior to 3.1.0 did not allow --min-size=0.
-B, --block-size=BLOCKSIZE
This forces the block size used in rsync's delta-transfer algorithm to a fixed value. It is normally selected based on the size of
each file being updated. See the technical report for details.
-e, --rsh=COMMAND
This option allows you to choose an alternative remote shell program to use for communication between the local and remote copies of
rsync. Typically, rsync is configured to use ssh by default, but you may prefer to use rsh on a local network.
If this option is used with [user@]host::module/path, then the remote shell COMMAND will be used to run an rsync daemon on the
remote host, and all data will be transmitted through that remote shell connection, rather than through a direct socket connection
to a running rsync daemon on the remote host. See the section "USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL CONNECTION" above.
Command-line arguments are permitted in COMMAND provided that COMMAND is presented to rsync as a single argument. You must use spa-
ces (not tabs or other whitespace) to separate the command and args from each other, and you can use single- and/or double-quotes to
preserve spaces in an argument (but not backslashes). Note that doubling a single-quote inside a single-quoted string gives you a
single-quote; likewise for double-quotes (though you need to pay attention to which quotes your shell is parsing and which quotes
rsync is parsing). Some examples:
-e 'ssh -p 2234'
-e 'ssh -o "ProxyCommand nohup ssh firewall nc -w1 %h %p"'
(Note that ssh users can alternately customize site-specific connect options in their .ssh/config file.)
You can also choose the remote shell program using the RSYNC_RSH environment variable, which accepts the same range of values as -e.
See also the --blocking-io option which is affected by this option.
--rsync-path=PROGRAM
Use this to specify what program is to be run on the remote machine to start-up rsync. Often used when rsync is not in the default
remote-shell's path (e.g. --rsync-path=/usr/local/bin/rsync). Note that PROGRAM is run with the help of a shell, so it can be any
program, script, or command sequence you'd care to run, so long as it does not corrupt the standard-in & standard-out that rsync is
using to communicate.
One tricky example is to set a different default directory on the remote machine for use with the --relative option. For instance:
rsync -avR --rsync-path="cd /a/b && rsync" host:c/d /e/
-M, --remote-option=OPTION
This option is used for more advanced situations where you want certain effects to be limited to one side of the transfer only. For
instance, if you want to pass --log-file=FILE and --fake-super to the remote system, specify it like this:
rsync -av -M --log-file=foo -M--fake-super src/ dest/
If you want to have an option affect only the local side of a transfer when it normally affects both sides, send its negation to the
remote side. Like this:
rsync -av -x -M--no-x src/ dest/
Be cautious using this, as it is possible to toggle an option that will cause rsync to have a different idea about what data to
expect next over the socket, and that will make it fail in a cryptic fashion.
Note that it is best to use a separate --remote-option for each option you want to pass. This makes your useage compatible with the
--protect-args option. If that option is off, any spaces in your remote options will be split by the remote shell unless you take
steps to protect them.
When performing a local transfer, the "local" side is the sender and the "remote" side is the receiver.
Note some versions of the popt option-parsing library have a bug in them that prevents you from using an adjacent arg with an equal
in it next to a short option letter (e.g. -M--log-file=/tmp/foo. If this bug affects your version of popt, you can use the version
of popt that is included with rsync.
-C, --cvs-exclude
This is a useful shorthand for excluding a broad range of files that you often don't want to transfer between systems. It uses a
similar algorithm to CVS to determine if a file should be ignored.
The exclude list is initialized to exclude the following items (these initial items are marked as perishable -- see the FILTER RULES
section):
RCS SCCS CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.state .nse_depinfo *~ #* .#* ,* _$* *$ *.old *.bak *.BAK *.orig *.rej
.del-* *.a *.olb *.o *.obj *.so *.exe *.Z *.elc *.ln core .svn/ .git/ .hg/ .bzr/
then, files listed in a $HOME/.cvsignore are added to the list and any files listed in the CVSIGNORE environment variable (all
cvsignore names are delimited by whitespace).
Finally, any file is ignored if it is in the same directory as a .cvsignore file and matches one of the patterns listed therein.
Unlike rsync's filter/exclude files, these patterns are split on whitespace. See the cvs(1) manual for more information.
If you're combining -C with your own --filter rules, you should note that these CVS excludes are appended at the end of your own
rules, regardless of where the -C was placed on the command-line. This makes them a lower priority than any rules you specified
explicitly. If you want to control where these CVS excludes get inserted into your filter rules, you should omit the -C as a com-
mand-line option and use a combination of --filter=:C and --filter=-C (either on your command-line or by putting the ":C" and "-C"
rules into a filter file with your other rules). The first option turns on the per-directory scanning for the .cvsignore file. The
second option does a one-time import of the CVS excludes mentioned above.
-f, --filter=RULE
This option allows you to add rules to selectively exclude certain files from the list of files to be transferred. This is most use-
ful in combination with a recursive transfer.
You may use as many --filter options on the command line as you like to build up the list of files to exclude. If the filter con-
tains whitespace, be sure to quote it so that the shell gives the rule to rsync as a single argument. The text below also mentions
that you can use an underscore to replace the space that separates a rule from its arg.
See the FILTER RULES section for detailed information on this option.
-F The -F option is a shorthand for adding two --filter rules to your command. The first time it is used is a shorthand for this rule:
--filter='dir-merge /.rsync-filter'
This tells rsync to look for per-directory .rsync-filter files that have been sprinkled through the hierarchy and use their rules to
filter the files in the transfer. If -F is repeated, it is a shorthand for this rule:
--filter='exclude .rsync-filter'
This filters out the .rsync-filter files themselves from the transfer.
See the FILTER RULES section for detailed information on how these options work.
--exclude=PATTERN
This option is a simplified form of the --filter option that defaults to an exclude rule and does not allow the full rule-parsing
syntax of normal filter rules.
See the FILTER RULES section for detailed information on this option.
--exclude-from=FILE
This option is related to the --exclude option, but it specifies a FILE that contains exclude patterns (one per line). Blank lines
in the file and lines starting with ';' or '#' are ignored. If FILE is -, the list will be read from standard input.
--include=PATTERN
This option is a simplified form of the --filter option that defaults to an include rule and does not allow the full rule-parsing
syntax of normal filter rules.
See the FILTER RULES section for detailed information on this option.
--include-from=FILE
This option is related to the --include option, but it specifies a FILE that contains include patterns (one per line). Blank lines
in the file and lines starting with ';' or '#' are ignored. If FILE is -, the list will be read from standard input.
--files-from=FILE
Using this option allows you to specify the exact list of files to transfer (as read from the specified FILE or - for standard
input). It also tweaks the default behavior of rsync to make transferring just the specified files and directories easier:
o The --relative (-R) option is implied, which preserves the path information that is specified for each item in the file (use
--no-relative or --no-R if you want to turn that off).
o The --dirs (-d) option is implied, which will create directories specified in the list on the destination rather than noisily
skipping them (use --no-dirs or --no-d if you want to turn that off).
o The --archive (-a) option's behavior does not imply --recursive (-r), so specify it explicitly, if you want it.
o These side-effects change the default state of rsync, so the position of the --files-from option on the command-line has no
bearing on how other options are parsed (e.g. -a works the same before or after --files-from, as does --no-R and all other
options).
The filenames that are read from the FILE are all relative to the source dir -- any leading slashes are removed and no ".." refer-
ences are allowed to go higher than the source dir. For example, take this command:
rsync -a --files-from=/tmp/foo /usr remote:/backup
If /tmp/foo contains the string "bin" (or even "/bin"), the /usr/bin directory will be created as /backup/bin on the remote host.
If it contains "bin/" (note the trailing slash), the immediate contents of the directory would also be sent (without needing to be
explicitly mentioned in the file -- this began in version 2.6.4). In both cases, if the -r option was enabled, that dir's entire
hierarchy would also be transferred (keep in mind that -r needs to be specified explicitly with --files-from, since it is not
implied by -a). Also note that the effect of the (enabled by default) --relative option is to duplicate only the path info that is
read from the file -- it does not force the duplication of the source-spec path (/usr in this case).
In addition, the --files-from file can be read from the remote host instead of the local host if you specify a "host:" in front of
the file (the host must match one end of the transfer). As a short-cut, you can specify just a prefix of ":" to mean "use the
remote end of the transfer". For example:
rsync -a --files-from=:/path/file-list src:/ /tmp/copy
This would copy all the files specified in the /path/file-list file that was located on the remote "src" host.
If the --iconv and --protect-args options are specified and the --files-from filenames are being sent from one host to another, the
filenames will be translated from the sending host's charset to the receiving host's charset.
NOTE: sorting the list of files in the --files-from input helps rsync to be more efficient, as it will avoid re-visiting the path
elements that are shared between adjacent entries. If the input is not sorted, some path elements (implied directories) may end up
being scanned multiple times, and rsync will eventually unduplicate them after they get turned into file-list elements.
-0, --from0
This tells rsync that the rules/filenames it reads from a file are terminated by a null ('