condvar(9F) Kernel Functions for Drivers condvar(9F)
NAME
condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig, cv_timedwait, cv_timedwait_sig - condition variable routines
SYNOPSIS
#include <sys/ksynch.h>
void cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg);
void cv_destroy(kcondvar_t *cvp);
void cv_wait(kcondvar_t *cvp, kmutex_t *mp);
void cv_signal(kcondvar_t *cvp);
void cv_broadcast(kcondvar_t *cvp);
int cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp);
clock_t cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);
clock_t cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);
INTERFACE LEVEL
Solaris DDI specific (Solaris DDI).
PARAMETERS
cvp A pointer to an abstract data type kcondvar_t.
mp A pointer to a mutual exclusion lock (kmutex_t), initialized by mutex_init(9F) and held by the caller.
name Descriptive string. This is obsolete and should be NULL. (Non-NULL strings are legal, but they're a waste of kernel mem-
ory.)
type The constant CV_DRIVER.
arg A type-specific argument, drivers should pass arg as NULL.
timeout A time, in absolute ticks since boot, when cv_timedwait() or cv_timedwait_sig() should return.
DESCRIPTION
Condition variables are a standard form of thread synchronization. They are designed to be used with mutual exclusion locks (mutexes). The
associated mutex is used to ensure that a condition can be checked atomically and that the thread can block on the associated condition
variable without missing either a change to the condition or a signal that the condition has changed. Condition variables must be initial-
ized by calling cv_init(), and must be deallocated by calling cv_destroy().
The usual use of condition variables is to check a condition (for example, device state, data structure reference count, etc.) while hold-
ing a mutex which keeps other threads from changing the condition. If the condition is such that the thread should block, cv_wait() is
called with a related condition variable and the mutex. At some later point in time, another thread would acquire the mutex, set the condi-
tion such that the previous thread can be unblocked, unblock the previous thread with cv_signal() or cv_broadcast(), and then release the
mutex.
cv_wait() suspends the calling thread and exits the mutex atomically so that another thread which holds the mutex cannot signal on the con-
dition variable until the blocking thread is blocked. Before returning, the mutex is reacquired.
cv_signal() signals the condition and wakes one blocked thread. All blocked threads can be unblocked by calling cv_broadcast(). You must
acquire the mutex passed into cv_wait() before calling cv_signal() or cv_broadcast().
The function cv_wait_sig() is similar to cv_wait() but returns 0 if a signal (for example, by kill(2)) is sent to the thread. In any case,
the mutex is reacquired before returning.
The function cv_timedwait() is similar to cv_wait(), except that it returns -1 without the condition being signaled after the timeout time
has been reached.
The function cv_timedwait_sig() is similar to cv_timedwait() and cv_wait_sig(), except that it returns -1 without the condition being sig-
naled after the timeout time has been reached, or 0 if a signal (for example, by kill(2)) is sent to the thread.
For both cv_timedwait() and cv_timedwait_sig(), time is in absolute clock ticks since the last system reboot. The current time may be found
by calling ddi_get_lbolt(9F).
RETURN VALUES
0 For cv_wait_sig() and cv_timedwait_sig() indicates that the condition was not necessarily signaled and the function
returned because a signal (as in kill(2)) was pending.
-1 For cv_timedwait() and cv_timedwait_sig() indicates that the condition was not necessarily signaled and the function
returned because the timeout time was reached.
>0 For cv_wait_sig(), cv_timedwait() or cv_timedwait_sig() indicates that the condition was met and the function returned due
to a call to cv_signal() or cv_broadcast(), or due to a premature wakeup (see NOTES).
CONTEXT
These functions can be called from user, kernel or interrupt context. In most cases, however, cv_wait(), cv_timedwait(), cv_wait_sig(), and
cv_timedwait_sig() should not be called from interrupt context, and cannot be called from a high-level interrupt context.
If cv_wait(), cv_timedwait(), cv_wait_sig(), or cv_timedwait_sig() are used from interrupt context, lower-priority interrupts will not be
serviced during the wait. This means that if the thread that will eventually perform the wakeup becomes blocked on anything that requires
the lower-priority interrupt, the system will hang.
For example, the thread that will perform the wakeup may need to first allocate memory. This memory allocation may require waiting for pag-
ing I/O to complete, which may require a lower-priority disk or network interrupt to be serviced. In general, situations like this are hard
to predict, so it is advisable to avoid waiting on condition variables or semaphores in an interrupt context.
EXAMPLES
Example 1: Waiting for a Flag Value in a Driver's Unit
Here the condition being waited for is a flag value in a driver's unit structure. The condition variable is also in the unit structure, and
the flag word is protected by a mutex in the unit structure.
mutex_enter(&un->un_lock);
while (un->un_flag & UNIT_BUSY)
cv_wait(&un->un_cv, &un->un_lock);
un->un_flag |= UNIT_BUSY;
mutex_exit(&un->un_lock);
Example 2: Unblocking Threads Blocked by the Code in Example 1
At some later point in time, another thread would execute the following to unblock any threads blocked by the above code.
mutex_enter(&un->un_lock);
un->un_flag &= ~UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);
NOTES
It is possible for cv_wait(), cv_wait_sig(), cv_timedwait(), and cv_timedwait_sig() to return prematurely, that is, not due to a call to
cv_signal() or cv_broadcast(). This occurs most commonly in the case of cv_wait_sig() and cv_timedwait_sig() when the thread is stopped and
restarted by job control signals or by a debugger, but can happen in other cases as well, even for cv_wait(). Code that calls these func-
tions must always recheck the reason for blocking and call again if the reason for blocking is still true.
If your driver needs to wait on behalf of processes that have real-time constraints, use cv_timedwait() rather than delay(9F). The delay()
function calls timeout(9F), which can be subject to priority inversions.
Not all threads can receive signals from user level processes. In cases where such reception is impossible (such as during execution of
close(9E) due to exit(2)), cv_wait_sig() behaves as cv_wait(), and cv_timedwait_sig() behaves as cv_timedwait(). To avoid unkillable pro-
cesses, users of these functions may need to protect against waiting indefinitely for events that might not occur. The
ddi_can_receive_sig(9F) function is provided to detect when signal reception is possible.
SEE ALSO
kill(2), ddi_can_receive_sig(9F), ddi_get_lbolt(9F), mutex(9F), mutex_init(9F)
Writing Device Drivers
SunOS 5.10 15 Dec 2003 condvar(9F)