Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

RedHat 9 (Linux i386) - man page for zsytrf (redhat section l)

ZSYTRF(l)						  )						    ZSYTRF(l)

NAME
ZSYTRF - compute the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method
SYNOPSIS
SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) CHARACTER UPLO INTEGER INFO, LDA, LWORK, N INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), WORK( * )
PURPOSE
ZSYTRF computes the factorization of a complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is A = U*D*U**T or A = L*D*L**T where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS.
ARGUMENTS
UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A con- tains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangu- lar part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L (see below for further details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (output) INTEGER array, dimension (N) Details of the interchanges and the block structure of D. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of WORK. LWORK >=1. For best performance LWORK >= N*NB, where NB is the block size returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diago- nal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.
FURTHER DETAILS
If UPLO = 'U', then A = U*D*U', where U = P(n)*U(n)* ... *P(k)U(k)* ..., i.e., U is a product of terms P(k)*U(k), where k decreases from n to 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k), and U(k) is a unit upper triangular matrix, such that if the diagonal block D(k) is of order s (s = 1 or 2), then ( I v 0 ) k-s U(k) = ( 0 I 0 ) s ( 0 0 I ) n-k k-s s n-k If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). If s = 2, the upper triangle of D(k) over- writes A(k-1,k-1), A(k-1,k), and A(k,k), and v overwrites A(1:k-2,k-1:k). If UPLO = 'L', then A = L*D*L', where L = P(1)*L(1)* ... *P(k)*L(k)* ..., i.e., L is a product of terms P(k)*L(k), where k increases from 1 to n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k), and L(k) is a unit lower triangular matrix, such that if the diagonal block D(k) is of order s (s = 1 or 2), then ( I 0 0 ) k-1 L(k) = ( 0 I 0 ) s ( 0 v I ) n-k-s+1 k-1 s n-k-s+1 If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). If s = 2, the lower triangle of D(k) over- writes A(k,k), A(k+1,k), and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). LAPACK version 3.0 15 June 2000 ZSYTRF(l)


All times are GMT -4. The time now is 08:07 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password