Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

RedHat 9 (Linux i386) - man page for slags2 (redhat section l)

SLAGS2(l)					)					SLAGS2(l)

NAME
       SLAGS2  -  compute  2-by-2  orthogonal  matrices  U,  V and Q, such that if ( UPPER ) then
       U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) (
       0  B3 ) ( x x )	or if ( .NOT.UPPER ) then  U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0
       x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x )  The rows of the transformed	A
       and  B are parallel, where  U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU )
       ( -SNV CSV ) ( -SNQ CSQ )  Z' denotes the transpose of Z

SYNOPSIS
       SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ )

	   LOGICAL	  UPPER

	   REAL 	  A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV

PURPOSE
       SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then  U'*A*Q
       = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 )
       ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x  )  and
       V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are
       parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV  CSV
       ) ( -SNQ CSQ ) Z' denotes the transpose of Z.

ARGUMENTS
       UPPER   (input) LOGICAL
	       = .TRUE.: the input matrices A and B are upper triangular.
	       = .FALSE.: the input matrices A and B are lower triangular.

       A1      (input) REAL
	       A2	(input) REAL A3      (input) REAL On entry, A1, A2 and A3 are elements of
	       the input 2-by-2 upper (lower) triangular matrix A.

       B1      (input) REAL
	       B2      (input) REAL B3	    (input) REAL On entry, B1, B2 and B3 are elements  of
	       the input 2-by-2 upper (lower) triangular matrix B.

       CSU     (output) REAL
	       SNU     (output) REAL The desired orthogonal matrix U.

       CSV     (output) REAL
	       SNV     (output) REAL The desired orthogonal matrix V.

       CSQ     (output) REAL
	       SNQ     (output) REAL The desired orthogonal matrix Q.

LAPACK version 3.0			   15 June 2000 				SLAGS2(l)


All times are GMT -4. The time now is 12:39 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password