Linux & Unix Commands - Search Man Pages

SGGLSE(l)) SGGLSE(l)SGGLSE - solve the linear equality-constrained least squares (LSE) problemNAMESUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, P REAL A( LDA, * ), B( LDB, * ), C( * ), D( * ), WORK( * ), X( * )SYNOPSISSGGLSE solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( ( A ) ) = N. ( ( B ) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a GRQ factoriza- tion of the matrices B and A.PURPOSEM (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. P (input) INTEGER The number of rows of the matrix B. 0 <= P <= N <= M+P. A (input/output) REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) REAL array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B is destroyed. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,P). C (input/output) REAL array, dimension (M) On entry, C contains the right hand side vector for the least squares part of the LSE problem. On exit, the residual sum of squares for the solution is given by the sum of squares of elements N-P+1 to M of vector C. D (input/output) REAL array, dimension (P) On entry, D contains the right hand side vector for the constrained equation. On exit, D is destroyed. X (output) REAL array, dimension (N) On exit, X is the solution of the LSE problem. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M+N+P). For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, where NB is an upper bound for the optimal blocksizes for SGEQRF, SGERQF, SOR- MQR and SORMRQ. If LWORK =ARGUMENTS, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit. < 0: if INFO =-1, the i-th argument had an illegal value.-iLAPACK version 3.015 June 2000 SGGLSE(l)

All times are GMT -4. The time now is 04:14 AM.