
SGELSX(l) ) SGELSX(l)
NAME
SGELSX  routine is deprecated and has been replaced by routine SGELSY
SYNOPSIS
SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, INFO )
INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
REAL RCOND
INTEGER JPVT( * )
REAL A( LDA, * ), B( LDB, * ), WORK( * )
PURPOSE
This routine is deprecated and has been replaced by routine SGELSY. SGELSX computes the
minimumnorm solution to a real linear least squares problem:
minimize  A * X  B 
using a complete orthogonal factorization of A. A is an MbyN matrix which may be rank
deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call;
they are stored as the columns of the MbyNRHS right hand side matrix B and the NbyNRHS
solution matrix X.
The routine first computes a QR factorization with column pivoting:
A * P = Q * [ R11 R12 ]
[ 0 R22 ]
with R11 defined as the largest leading submatrix whose estimated condition number is less
than 1/RCOND. The order of R11, RANK, is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal transforma
tions from the right, arriving at the complete orthogonal factorization:
A * P = Q * [ T11 0 ] * Z
[ 0 0 ]
The minimumnorm solution is then
X = P * Z' [ inv(T11)*Q1'*B ]
[ 0 ]
where Q1 consists of the first RANK columns of Q.
ARGUMENTS
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of matrices B and X.
NRHS >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the MbyN matrix A. On exit, A has been overwritten by details of its
complete orthogonal factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the MbyNRHS right hand side matrix B. On exit, the NbyNRHS solution
matrix X. If m >= n and RANK = n, the residual sumofsquares for the solution in
the ith column is given by the sum of squares of elements N+1:M in that column.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,M,N).
JPVT (input/output) INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the ith column of A is an initial column, otherwise
it is a free column. Before the QR factorization of A, all initial columns are
permuted to the leading positions; only the remaining free columns are moved as a
result of column pivoting during the factorization. On exit, if JPVT(i) = k, then
the ith column of A*P was the kth column of A.
RCOND (input) REAL
RCOND is used to determine the effective rank of A, which is defined as the order
of the largest leading triangular submatrix R11 in the QR factorization with piv
oting of A, whose estimated condition number < 1/RCOND.
RANK (output) INTEGER
The effective rank of A, i.e., the order of the submatrix R11. This is the same
as the order of the submatrix T11 in the complete orthogonal factorization of A.
WORK (workspace) REAL array, dimension
(max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
LAPACK version 3.0 15 June 2000 SGELSX(l) 
