Home Search Forums Register Forum Rules Man Pages FAQ Members Search Today's Posts Mark Forums Read

# RedHat 9 (Linux i386) - man page for dlagv2 (redhat section l)

Linux & Unix Commands - Search Man Pages
 Man Page or Keyword Search: man All Sections 1 - General Commands 1m - System Admin 2 - System Calls 3 - Subroutines 4 - Special Files 5 - File Formats 6 - Games 7 - Macros and Conventions 8 - Maintenance Commands 9 - Kernel Interface N - New Commands Select Man Page Set:       Linux 2.6 RedHat 9 (Linux i386) Debian 7.7 SuSE 11.3 CentOS 7.0 SunOS 5.10 OpenSolaris 2009.06 BSD 2.11 FreeBSD 11.0 NetBSD 6.1.5 OSX 10.6.2 OpenDarwin 7.2.1 ULTRIX 4.2 PHP 5.6 Minix 2.0 Plan 9 Unix Version 7 OSF1 5.1 (alpha) POSIX 1003.1 X11R7.4 XFree86 4.7.0 all unix.com man page sets apropos Keyword Search (sections above)

 ```DLAGV2(l) ) DLAGV2(l) NAME DLAGV2 - compute the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular SYNOPSIS SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR ) INTEGER LDA, LDB DOUBLE PRECISION CSL, CSR, SNL, SNR DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), B( LDB, * ), BETA( 2 ) PURPOSE DLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0. ARGUMENTS A (input/output) DOUBLE PRECISION array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA (input) INTEGER THe leading dimension of the array A. LDA >= 2. B (input/output) DOUBLE PRECISION array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB (input) INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR (output) DOUBLE PRECISION array, dimension (2) ALPHAI (output) DOUBLE PRECISION array, dimension (2) BETA (output) DOUBLE PRECISION array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL (output) DOUBLE PRECISION The cosine of the left rotation matrix. SNL (output) DOUBLE PRECISION The sine of the left rotation matrix. CSR (output) DOUBLE PRECISION The cosine of the right rotation matrix. SNR (output) DOUBLE PRECISION The sine of the right rotation matrix. FURTHER DETAILS Based on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA LAPACK version 3.0 15 June 2000 DLAGV2(l)```
Unix & Linux Commands & Man Pages : ©2000 - 2018 Unix and Linux Forums

All times are GMT -4. The time now is 03:37 PM.